

THE SCOPE OF TOOLS AND TECHNIQUES

K.M.Eazhil Assistant Professor Department of Mechanical Engineering SNS College of Engineering Coimbatore

REGRESSION ANALYSIS

Regression Analysis is a tool to establish the 'best fit' relationship between two variables.

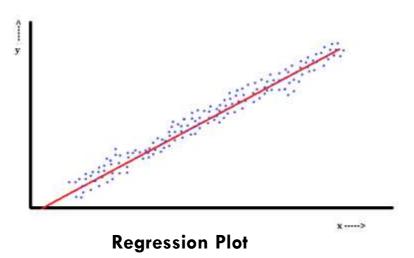
Two Common Methods are

- Method of intercept & slope
- >Method of least square

What does a Regression analysis do?

 $y = b_0 + b_1 x + e$

Where:


•y: Output variable

•x: Input or Predictor Variable

•b0: Intercept or constant

•b1: Slope

•e: Error or Residual value

HOW TO PERFORM A REGRESSION ANALYSIS?

1. Identify the relevant input variables and collect data on all the input variables and

output variable.

- 2. Select the suitable regression model (Simple Regression, Multiple Regression etc)
- 3. Calculate r2 value. Now a days a lot of software packages, add-ins are available to perform the entire calculation and analysis.
- 4. Assess the p value for each of the input variables (p-value less than the confidence level considered indicates that the variable is a useful predictor). Remove any variables with

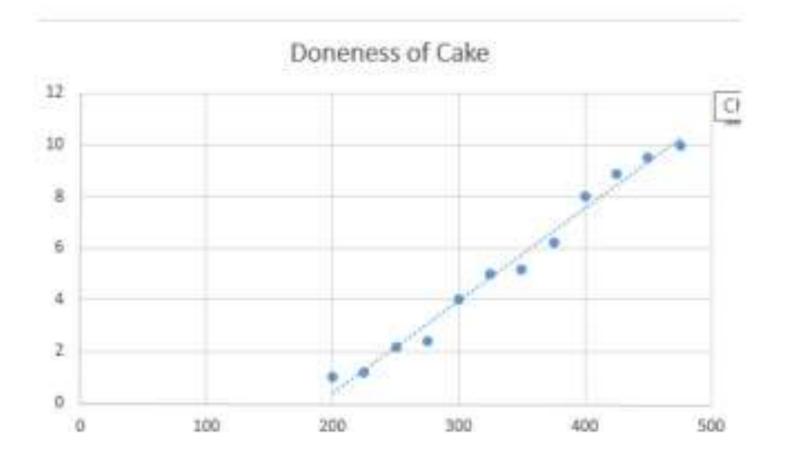
p-value > confidence level.

- 5. Test the variables for Multicollinearity and remove duplicate variables.
- 6. Develop the predictor equation with significant and shortlisted variables only.

ACTIVITY

Cause and Effect Diagram is not known as!

- a. Ishikawa Diagram
- **b.** 4-M
- c. Affinity Diagram
- d. None of the above


EXAMPLE

Oven Temperature	Doneness of Cake
200	1
225	1.2
250	2.2
275	2.4
300	4
325	5
350	5.2
375	6.2
400	8
425	8.9
450	9.5
475	10

EXAMPLE

REFERENCES

- 1. https://asq.org/quality-resources/pareto
- 2. <u>https://www.sixsigmadaily.com/cause-and-effect-diagram/</u>
- 3. https://asq.org/quality-resources/pareto
- 4. What is Lean Six Sigma By Michael L. George, David T. Rowlands, Bill Kastle

THANK YOU