

THE SCOPE OF TOOLS AND TECHNIQUES

K.M.Eazhil Assistant Professor Department of Mechanical Engineering SNS College of Engineering Coimbatore

MEASUREMENT SYSTEM ANALYSIS

MSA – statistical study –explores variation in measurement

Calibration

Accuracy

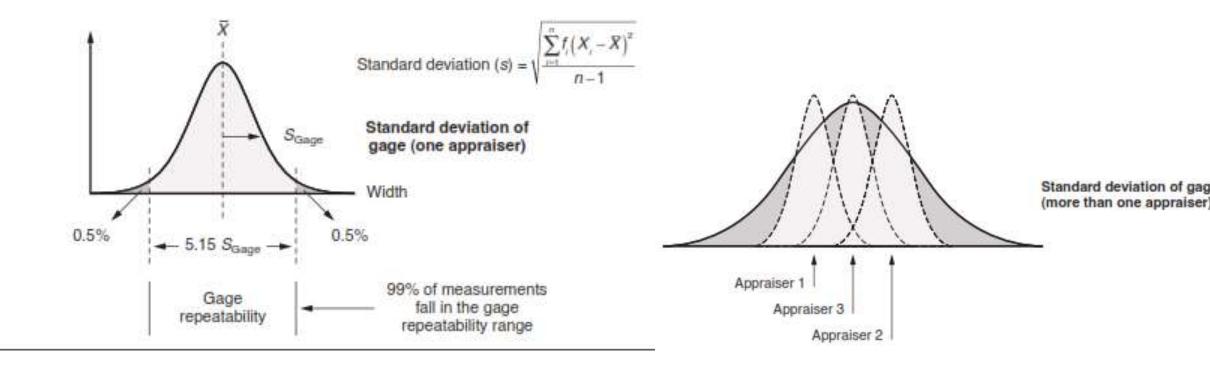
> Precision

Stability

Repeatability

Reproducibility

Linearity


≻Bias

GAUGE REPEATABILITY & REPRODUCIBILITY

Repeatability – the equipment measurement variation expressed as standard deviation

Gage Repeatability

ACTIVITY

STS METHTUTIONS

At the end of a lean six sigma project, who should be the primary beneficiary of the project results?

➤Customer

➤Top Management

➤Employees

➤Sponsors

	Match the following
\bigcirc	Accurate but not Precise
۲	Not Accurate or Precise
0	Accurate & Precise
\bigcirc	Precise but not Accurate

RANGE & AVERAGE METHOD

Repeatability =
$$\frac{5.15\overline{R}}{d_2}$$

 $V_p = \frac{5.15R_p}{d_2}$
Reproducibility = $\sqrt{\left(\frac{5.15\overline{X}_{range}}{d_2}\right)^2 - \frac{\text{Repeatability}^2}{nr}}$
 $V_T = \sqrt{R\& R^2 + V_p^2}$

 $R\&R = \sqrt{\text{Repeatability}^2 + \text{Reproducibility}^2}$

Appendix A - Values of d₂

z							W							
	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1.41	1.91	2.24	2.48	2.67	2.83	2.96	3.08	3.18	3.27	3.35	3.42	3.49	3.55
2	1.28	1.81	2.15	2.40	2.60	2.77	2.91	3.02	3.13	3.22	3.30	3.38	3.45	3.51
3	1.23	1.77	2.12	2.38	2.58	2.75	2.89	3.01	3.11	3.21	3.29	3.37	3.43	3.50
4	1.21	1.75	2.11	2.37	2.57	2.74	2.88	3.00	3.10	3.20	3.28	3.36	3.43	3.49
5	1.19	1.74	2.10	2.36	2.56	2.78	2.87	2.99	3.10	3.19	3.28	3.36	3.42	3.49
6	1.18	1.73	2.09	2.35	2.56	2.73	2.87	2.99	3.10	3.19	3.27	3.35	3.42	3.49
7	1.17	1.73	2.09	2.35	2.55	2.72	2.87	2.99	3.10	3.19	3.27	3.35	3.42	3.48
8	1.17	1.72	2.08	2.35	2.55	2.72	2.87	2.98	3.09	3.19	3.27	3.35	3.42	3.48
9	1.16	1.72	2.08	2.34	2.55	2.72	2.86	2.98	3.09	3.19	3.27	3.35	3.42	3.48
10	1.16	1.72	2.08	2.34	2.55	2.72	2.86	2.98	3.09	3.18	3.27	3.34	3.42	3.48
11	1.15	1.71	2.08	2.34	2.55	2.72	2.86	2.98	3.09	3.18	3.27	3.34	3.41	3.48
12	1.15	1.71	2.07	2.34	2.55	2.72	2.85	2.98	3.09	3.18	3.27	3.34	3.41	3.48
13	1.15	1.71	2.07	2.34	2.55	2.71	2.85	2.98	3.09	3.18	3.27	3.34	3.41	3.48
14	1.15	1.71	2.07	2.34	2.54	2.71	2.85	2.98	3.09	3.18	3.27	3.34	3.41	3.48
15	1.15	1.71	2.07	2.34	2.54	2.71	2.85	2.98	3.08	3.18	3.26	3.34	3.41	3.48
>15	1.128	1.693	2.059	2.326	2.534	2.704	2.847	2.97	3.078	3.173	3.258	3.336	3.407	3.472

The thickness, in millimeters, of 10 parts have been measured by 3 operators, using the same measurement

equipment. Each operator measured each part twice, and the data is given in Table 1

	Operator								
	F	1	1	B	С				
Part	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2			
1	65.2	60.1	62.9	56.3	71.6	60.6			
2	85.8	86.3	85.7	80.5	92.0	87.4			
3	100.2	94.8	100.1	94.5	107.3	104.4			
4	85.0	95.1	84.8	90.3	92.3	94.6			
5	54.7	65.8	51.7	60.0	58.9	67.2			
6	98.7	90.2	92.7	87.2	98.9	93.5			
7	94.5	94.5	91.0	93.4	95.4	103.3			
8	87.2	82.4	83.9	78.8	93.0	85.8			
9	82.4	82.2	80.7	80.3	87.9	88.1			
10	100.2	104.9	99.7	103.2	104.3	111.5			

Table 1. Range & Average method example data.

Repeatability is computed using the average of the ranges for all appraiser and all parts. This data is given

in Table 2.

ί.	Operator									
	20 22	Α		1	B		С			
Part	Trial 1	Trial 2	R	Trial 1	Trial 2	R	Trial 1	Trial 2	R	
1	65.2	60.1	5.1	62.9	56.3	6.6	71.6	60.6	11.0	
2	85.8	86,3	0.5	85.7	80.5	5.2	92.0	87.4	4.6	
3	100.2	94.8	5.4	100.1	94.5	5.6	107.3	104.4	2.9	
4	85.0	95.1	10.1	84.8	90.3	5.5	92.3	94.6	2.3	
5	54.7	65.8	11.1	51.7	60.0	8.3	58.9	67.2	8.3	
6	98.7	90.2	8.5	92.7	87.2	5.5	98.9	93.5	5.4	
7	94.5	94.5	0.0	91.0	93.4	2.4	95.4	103.3	7.9	
8	87.2	82.4	4.8	83.9	78.8	5.1	93.0	85.8	7.2	
9	82.4	82.2	0.2	80.7	80.3	0.4	87.9	88.1	0.2	
10	100.2	104.9	4.7	99.7	103.2	3.5	104.3	111.5	7.2	

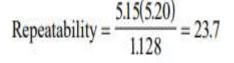
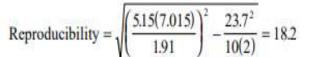



 Table 2. Example problem range calculations

Reproducibility example computations.

Part	Trial	Operator B	Operator C	R
1	1	62.9	71.6	8.7
2	1	85.7	92.0	6.3
2 3	1	100.1	107.3	7.2
4	1	84.8	92.3	7.5
5	1	51.7	58.9	7.2
6	1	92.7	98.9	6.2
7	1	91.0	95.4	4.4
8	1	83.9	93.0	9.1
9	1	80.7	87.9	7.2
10	1	99.7	104.3	4.6
1	2	56.3	60.6	4.3
2	2 2	80.5	87.4	6.9
3	2	94.5	104.4	9.9
4		90.3	94.6	4.3
5	2 2 2 2 2 2 2	60.0	67.2	7.2
6 7	2	87.2	93.5	6.3
	2	93.4	103.3	9.9
8	2	78.8	85.8	7.0
9	2	80.3	88.1	7.8
10	2	103.2	111.5	8.3

The repeatability and reproducibility is

$$R \& R = \sqrt{23.7^2 + 18.2^2} = 29.9$$

 Table 3. Reproducibility example computations.

Example part variability computations.

	Operator								
Part	1	4		B	(
	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Avg		
1	65.2	60.1	62.9	56.3	71.6	60.6	62.78		
2	85.8	86.3	85.7	80.5	92.0	87.4	86.28		
3	100.2	94.8	100.1	94.5	107.3	104.4	100.22		
4	85.0	95.1	84.8	90.3	92.3	94.6	90.35		
5	54.7	65.8	51.7	60.0	58.9	67.2	59.72		
6	98.7	90.2	92.7	87.2	98.9	93.5	93.53		
7	94.5	94.5	91.0	93.4	95.4	103.3	95.35		
8	87.2	82.4	83.9	78.8	93.0	85.8	85.18		
9	82.4	82.2	80.7	80.3	87.9	88.1	83.60		
10	100.2	104.9	99.7	103.2	104.3	111.5	103.97		

 $V_p = \frac{5.15(44.25)}{3.18} = 71.7$

The total measurement system variability is

 $V_T = \sqrt{29.9^2 + 71.7^2} = 77.7$

Iable 4 Example part variability computations

REFERENCES

- 1. https://asq.org/quality-resources/pareto
- 2. <u>https://www.sixsigmadaily.com/cause-and-effect-diagram/</u>
- 3. https://asq.org/quality-resources/pareto
- 4. What is Lean Six Sigma By Michael L. George, David T. Rowlands, Bill Kastle

THANK YOU