s =
-
é B
[

L rIruTIONS

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107

Accredited by NAAC-UGC with ‘A’ Grade
Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

19CS204 OBJECT ORIENTED PROGRAMMING

[YEAR /Il SEMESTER

Topic — Thread Synchronization

Thread Synchronization

00 0:;
&’.
2]

Synchronization iIs a process of handling resource accessibility by multiple thread requests. The main
purpose of synchronization is to avoid thread interference.

When two or more threads need access to a shared resource, they need some way to ensure that the
resource will be used by only one thread at a time.

The process by which this is achieved is called synchronization.

For example, If a thread iIs writing some data another thread may be reading the same data at that
time. This may bring inconsistency.

Synchronization In java is the capability to control the access of multiple threads to any shared
resource.

Thread Synchronization/ Ashok Kumar / IT /SNSCE -

Thread Synchronization

Key to synchronization is the concept of the monitor.

« A monitor iIs an object that is used as a mutually exclusive lock.
* Only one thread can own a monitor at a given time.
« When a thread acquires a lock, it Is said to have entered the monitor.

« All other threads attempting to enter the locked monitor will be suspended until the first thread exits
the monitor.

« These other threads are said to be waiting for the monitor.

A thread that owns a monitor can reenter the same monitor If it so desires.

Thread Synchronization/ Ashok Kumar / IT /SNSCE -

Thread Synchronization

« Synchronization can be accomplished by two ways In java,

* By Synchronized Method

* By Synchronized Statement or Block

Synchronized Method

« To enter an object’s monitor, just call a method that has been modified with the synchronized
keyword.

* While a thread is inside a synchronized method, all other threads that try to call it (or any other
synchronized method) on the same instance have to walit.

* To exit the monitor and relinquish control of the object to the next waiting thread, the owner of the
monitor simply returns from the synchronized method.

Thread Synchronization/ Ashok Kumar / IT /SNSCE -

Thread Synchronization ® ¢
Example without synchronization class MyThread?2 extends Thread{ ¢
class Table{ Table t: ¢
void printTable(int n){//method not synchronized I\/IyThr’eadZ(TabIe 04
for(int i=1;i<=5;i++){ this.t=t;
System.out.printin(n*i); 1 |
try{ public void run(){
Thread.sleep(400); t.printTable(100);
ycatch(Exception e){System.out.printin(e); } 1
;o }
b public class TestSynchronization1{
class MyThread extends Thread{ public static void main(String args[]){
Table t; Table obj = new Table();//only one object
MyThread1(Table){ MyThread1 t1=new MyThread1(obj);
this.t=t; MyThread2 t2=new MyThread2(obj);
I t1.start();
public void run(){ t2.start();
t.printTable(5); }
;¥ }

Thread Synchronization/ Ashok Kumar / IT /SNSCE -

Thread Synchronization

Example 1 with Synchronized Method
class Table{
synchronized void printTable(int n){
for(int i1=1;i1<=5;1++){
System.out.printin(n*i);

try{
Thread.sleep(400);

}catch(Exception e){System.out.printin(e);}

iy

h
class MyThread1 extends Thread{

Table t;
MyThread1(Table t){
this.t=t;

)

public void run(){
t.printTable(5);

;¥

class MyThread2 extends Thread{
Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){
t.printTable(100);

}
¥

public class TestSynchronization1{
public static void main(String args[]){
Table obj = new Table();//only one object
MyThreadl t1=new MyThread1(obj);
MyThread2 t2=new MyThread2(obj);
t1.start();

t2.start();

¥
¥

Thread Synchronization/ Ashok Kumar / IT /SNSCE

00 0:;
&’.
2]

Thread Synchronization
Synchronized block

* While creating synchronized methods within classes that you create Is an easy and effective means of
achieving synchronization, it will not work in all cases.

« To understand why, consider the following. Imagine that you want to synchronize access to objects of
a class that was not designed for multithreaded access.

« That is, the class does not use synchronized methods.

* This is the general form of the synchronized statement:
synchronized(objRef) {
// statements to be synchronized

}

« Here, objRef is a reference to the object being synchronized.

« Asynchronized block ensures that a call to a synchronized method that is a member of objRef’s class
occurs only after the current thread has successfully entered objRef’s monitor.

Thread Synchronization/ Ashok Kumar / IT /SNSCE -

Thread Synchronization

)
Example 2 Synchronized block O
class Table{ class MyThread2 extends Thread{ O
void printTable(int n){ Table t;
synchronized(this){//synchronized block MyThread2(Table t){

for(int i=1;i<=5;i++){ this.t=t;
System.out.println(n*i); }
try{ public void run(){
Thread.sleep(400); t.printTable(100);
}catch(Exception e){System.out.printin(e);} ¥

h
i//gnd of the method public class TestSynchronizedBlock1{
} public static void main(String args[]){
class MyThreadl extends Thread{ Table obj = new Table();//only one object
Table t: MyThreadl t1=new MyThread1(obj);
MyThread1(Table t){ MyThread2 t2=new MyThread2(obj);
this.t=t: t1.start();
3 t2.start();
public void run(){ }
t.printTable(5); }

}} Thread Synchronization/ Ashok Kumar / IT /SNSCE -

Thread Synchronization

Example 3 Synchronized Method
class Callme {
synchronized void call(String msg) {

public void run() {
target.call(msg);

System.out.print("["* + msg); }
try { }
Thread.sleep(1000);

} catch(InterruptedException e) { public class Synch {
System.out.printIn("Interrupted"): public static void main(String args[]) {
1 Callme target = new Callme();

System.out.printin("]"):}} Caller ob1 = new Caller(target, "Hello");

class Caller implements Runnable { Caller ob2 = new Caller(target, ::Synchlr'onized");
String msg; Caller ob3 = new Caller(target, "World");

Callme target; }
Thread t; }
public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

Thread Synchronization/ Ashok Kumar / IT /SNSCE -

Thread Synchronization

Example 4 Synchronized Block
class Callme {

void call(String msg) {
System.out.print("[" + msg);

public void run() {
synchronized (target) {
target.call(msg);

try { }

Thread.sleep(1000); }

} catch(InterruptedException e) { }

System.out.printin("Interrupted"); _

} public class Synch {
System.out.printin("]"):}} public static void main(String args[]) {
class Caller implements Runnable { Callme target = new Callme();

String msg; Caller ob1 = new Caller(target, "Hello");
Callme taréet; Caller ob2 = new Caller(target, "Synchronized");
Thread t: Caller ob3 = new Caller(target, "World");

public Caller(Callme targ, String s) { }
target = targ; ¥
msg = s;

t = new Thread(this);

t.start();

h
public void run() {

target.call(msg);
}3: Thread Synchronization/ Ashok Kumar / IT /SNSCE -

THANK YOU

Thread Synchronization/ Ashok Kumar / IT /SNSCE

