
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

19CS204 OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Topic – Thread Methods

2/10Thread Methods/ Ashok Kumar / IT /SNSCE

Thread methods

Using isAlive() and join()

• In all the practical situations main thread should finish last else other threads which have spawned

from the main thread will also finish.

• To accomplish main thread to finish last we have called sleep() within main() in previous example

with a long enough delay to ensure that all child threads terminate prior to the main thread.

• How can one thread know when another thread has ended?

• Two ways exist to determine whether a thread has finished.

• One is isAlive() and another is join()

3/10Thread Methods/ Ashok Kumar / IT /SNSCE

Thread methods

Using isAlive() and join()

• First, you can call isAlive() on the thread. Its general form is shown here:

• final boolean isAlive()

• The isAlive() method returns true if the thread upon which it is called is still running. It returns false

otherwise.

• Another way to achieve this by using join() method, this method when called from the parent thread

makes parent thread wait till child thread terminates.

• final void join() throws InterruptedException

• This method waits until the thread on which it is called terminates.

4/10Thread Methods/ Ashok Kumar / IT /SNSCE

Thread methods

Example – isAlive()
public class JavaIsAliveExp extends Thread

{

public void run()

{

try

{

Thread.sleep(300);

System.out.println("is run() method isAlive "+Thread.currentThread().isAlive());

}

catch (InterruptedException ie) {

}

}

public static void main(String[] args)

{

JavaIsAliveExp t1 = new JavaIsAliveExp();

System.out.println("before starting thread isAlive: "+t1.isAlive());

t1.start();

System.out.println("after starting thread isAlive: "+t1.isAlive());

}

}

5/10Thread Methods/ Ashok Kumar / IT /SNSCE

Thread methods

Example – join()
public class TestJoinMethod1 extends Thread{

public void run(){

for(int i=1;i<=5;i++){

try{

Thread.sleep(500);

}catch(Exception e){System.out.println(e);}

System.out.println(i);

} }

public static void main(String args[]){

TestJoinMethod1 t1=new TestJoinMethod1();

TestJoinMethod1 t2=new TestJoinMethod1();

TestJoinMethod1 t3=new TestJoinMethod1();

t1.start();

try{

t1.join();

}catch(Exception e){System.out.println(e);}

t2.start();

/*try{

t2.join();

}catch(Exception e){System.out.println(e);} */

t3.start();

} }

6/10Thread Methods/ Ashok Kumar / IT /SNSCE

Thread methods

Example : isAlive() and join()
class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

}

class DemoJoin {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

NewThread ob3 = new NewThread("Three");

System.out.println("Thread One is alive: “ + ob1.t.isAlive());

System.out.println("Thread Two is alive: “ + ob2.t.isAlive());

System.out.println("Thread Three is alive: “ + ob3.t.isAlive());

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Thread One is alive: “ + ob1.t.isAlive());

System.out.println("Thread Two is alive: “ + ob2.t.isAlive());

System.out.println("Thread Three is alive: “ + ob3.t.isAlive());

System.out.println("Main thread exiting.");

} }

7/10Thread Methods/ Ashok Kumar / IT /SNSCE

Thread methods

Thread Priorities

• Thread priorities are used by the thread scheduler to decide when each thread should be allowed to

run.

• In theory, over a given period of time, higher-priority threads get more CPU time than lower-priority

threads.

• Thread priority decides when to switch from one running thread to another, process is called context

switching

• A higher-priority thread can also preempt a lower-priority one.

• To set a thread’s priority, use the setPriority() method, which is a member of Thread.

This is its general form:

final void setPriority(int level)

• Here, level specifies the new priority setting for the calling thread.

8/10Thread Methods/ Ashok Kumar / IT /SNSCE

Thread methods

Thread Priorities

• In place of defining the priority in integers, we can use MIN_PRIORITY, NORM_PRIORITY or

MAX_PRIORITY.

• The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY.

• Currently, these values are 1 and 10, respectively.

• To return a thread to default priority, specify NORM_PRIORITY, which is currently 5.

• These priorities are defined as static final variables within Thread. For example

• public static int MIN_PRIORITY

• You can obtain the current priority setting by calling the getPriority() method of Thread, shown here:

final int getPriority()

9/10Thread Methods/ Ashok Kumar / IT /SNSCE

Thread methods

Thread Priorities

public class TestMultiPriority1 extends Thread{

public void run(){

System.out.println("running thread name is:"+Thread.currentThread().getName());

System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

}

public static void main(String args[]){

TestMultiPriority1 m1=new TestMultiPriority1();

TestMultiPriority1 m2=new TestMultiPriority1();

TestMultiPriority1 m3=new TestMultiPriority1();

System.out.println("Default Priority: "+Thread.currentThread().getPriority());

m1.setPriority(Thread.MIN_PRIORITY);

m2.setPriority(Thread.MAX_PRIORITY);

m3.setPriority(Thread.NORM_PRIORITY);

m1.start();

m2.start();

m3.start();

}

}

10/10Thread Methods/ Ashok Kumar / IT /SNSCE

THANK YOU

