

Incident Handling Lifecycle

Forensic Analysis

Preparation

Identification Containment

Eradication

Recovery

Forensic Analysis

- Evidence acquisition -

Log and Timeline analysis

- Media (e.g. file system) analysis - String search

- Data recovery

- Artifact (malware) analysis - Reporting Lesson-learned 47

Be warned!

No two incidents are identical

No one-for-all solution, tailor it for your OWN need!

Any types of incidents

DoS, Virus/Worm, Inappropriate usage, unauthorized access etc.

Focus on "hacking scenario"

But the principle remains the same! 48

Step 1 - Preparation

Know existing policies, regulations and laws

Authority of investigation

Dob description

Incident handling procedure

What information can be collected?

Privacy and wiretapping issue

Do not violate any existing security policies

And do not break laws!

□Security policy and incident handling

procedure Policies & procedures, write them down

on PAPER A simple and easy-to-follow procedure is very helpful

Preparation

Building a team

Information about the team - "Organizational Models for Computer Security Incident Response Teams (CSIRTs) 195B502 /Cyber Forensics /Unit 1/ RAJKUMAR.K.K / AP/ ECE / SNSCE

49

(http://www.cert.org/archive/pdf/03hb001.pdf)

Contacts information and communication channels

Name, telephone, email, PGP keys etc.

Incidents Prevention

Risk assessment

Patching, hardening, best practice, education etc.

Be aware of your organization's security policy

□Known your systems before an incident

50

□ Profile systems and network

□Know normal behaviours

Toolkit – Live CDs

Incident response toolkit

Linux forensic live CDs

Helix (no longer free 🕑 - <u>http://e-fense.com/</u>

Live response, live/dead acquisition and analysis

FCCU GNU/Linux Forensic Boot CD

Belgian Federal Computer Crime Unit

http://www.lnx4n6.be/

BackTrack 4 has an option to boot into forensic mode

Dhttp://remote-exploit.org/backtrack.html

Any others

Will not modify the target system harddisk

Will not auto-mount devices on target system

Will not use target system swap partition

Build-in some well-known open source forensic tools 51

Toolkit - Forensic

Any Linux system plus proper open source forensic tools

US CERT forensic appliance (fedora)

A fully functional Linux VM forensics appliance

Linux Forensics Tools Repository (RPMs for

fedora) http://www.cert.org/forensics/tools/

GANS SIFT workstation (Ubuntu)

□/M forensic appliance

https://computer-forensics2.sans.org/community/siftkit/

Free, but registered first

BackTrack

Load of tools readily available

Toolkit - Forensic

GUI-frontend GUI-frontend

□ The Sleuth Kit and Autopsy browser

http://www.sleuthkit.org/

Alternative – PSK (GUI-frontend)

http://ptk.dflabs.com/

The Coroner's Toolkit (TCT)

<u>http://www.porcupine.org/forensics/tct.html</u> 53

Toolkit – Network forensic

Wireshark/tshark

Cpdump

□P0f (OS passive fingerprinting)

Antivirus software

http://www.clamav.net/

AVG and avast! for Linux, free!

Toolkit – Build in

Compiled binaries run from CD or USB

- □s, lsof, ps, netstat, w, grep, uname, date, find, file, ifconfig, arp
- Gest before use
 - different Linux distributions and kernels
 - □both 32 bit and 64 bit platform

Will not modify A-time of system

binaries;

Be aware of limitation – can be cheated as well

Kernel mode rootkit

55

Incident Handling Lifecycle

Identification Step 2 - Identification

Detect deviation from normal status

Alerted by someone else;

Host & network IDS alerts;

Dantivirus/antispyware alerts;

Rootkit detection tools;

Gfile integrity check;

Gystem logs;

Girewall logs;

A trusted central logging facility is essential;

Correlate all information available to minimise

false alarm

Identification

Declare an incident once confirmed

And the sure that senior management is informed

Notification – who should be notified? DEGEE

CSIRTs: PROJECT-EGEE-SECURITYCSIRTS@in2p3.fr

Gereicher Following incident handling procedures

incident response procedure

<u>https://edms.cern.ch/document/867454</u>

Incident Handling Lifecycle

59

Forensic Analysis

Containment

Forensic Analysis

- Evidence acquisition

- Log and Timeline analysis -Media (e.g. file system) analysis

- String search
- Data recovery

- Artifact (malware) analysis - Reporting

Step 3 – Containment & Forensic

Analysis

Prevent attackers from further damaging systems Questions to be answered!

Dnline or Offline?

Pull the network cable?

Live or Dead system?

Pull the plug?

60

Forensic Analysis

■ Generation Content and Cont

Aim to obtain forensic sound evidences

Live system information

Will lose once powered off

Bit by bit disk image

Logs analysis

Timeline analysis

Data/file recovery

Collect volatile data FIRST, if possible! How to collect evidences

□ **V**olatile data collection

Hard disk image

Where to store evidences?

Attach a USB device

Transfer data over network with *netcat*

Evidence workstation (192.168.0.100): # ./nc -l p 2222 > evidence.txt Compromised host:

□#./ lsof-n |nc 192.168.0.100 2222

Volatile Data Collection

❑Aim:

Collect as much volatile data as possible

But **minimise** footprint on the target system

In the order of most volatile to least

Memory

Network status and connections **Running processes** Dther system information Be warned: system status will be **modified** Document everything you have done Be aware of the concept of "chain of custody" Advintain a good record (a paper

trail) of what you have done with evidence

⁶³ Volatile Data Collection?

System RAM

Raw memory image with *memdump*

Available at

http://www.porcupine.org/forensics/tct.html

Hardware-based memory acquisition?

□/irtual Machine

Take a snapshot

□Network Information

Depen ports and connections

☐sof and netstats

□Nmap

Process information

Running processes with *ps*

Process dumping with *pcat*

Available at

http://www.porcupine.org/forensics/tct.html 64

Other volatile data

Gystem Information

Gystem uptime: *uptime*

❑DS type and build: *uname –a*

Current date/time: *date*

Partition map: *fdisk -I*

Mount points: *mount*

_...?

65

What to do with memory

Linux memory dump

Very limited option (at least with open source tools)

Grings search for IP, email or strange

strings etc ICan be used to cross check

with evidence found in file system/logs

Some ongoing researches in open source community Collect Evidence – Disk Image

Bit by bit disk image

Capture both allocated and

unallocated space Do not use

gzip/tar or normal backup tools

Lose unallocated space

Can't recover deleted files

How to do it?

Live system vs dead system image?

Full disk vs Partition? Disk Image

Live system image vs Dead system image?

Helix Live CD or FCCU Live CD

🖵 Dr USB

Writeblocker?

□Full disk vs. Partition?

□Full disk if possible

Get everything in one go

Can copy host protection area -

HPA (after reset) Might not be

feasible

RAID system: too big, RAID reconstruction?

Image only partition

DS partitions Disk image

Linux *dd* command

🖵 ull disk

□dd if=/dev/sda of=/mnt/usb/sda.img bs=512

Partition

□dd if=/dev/sda1 of=/mnt/usb/sda1.img bs=512

Enhanced *dd* – e.g. *dc3dd or dcfldd*

http://dc3dd.sourceforge.net/

<u>http://dcfldd.sourceforge.net/</u>

☐dcfldd if=/dev/sourcedirve hash=md5 hashwindow=10M md5log=md5.txt bs=512 of=driveimage.dd

What to do with disk images?

Mount disk image/partition to the loop device on a forensic workstation in READ ONLY mode

Dmount -o loop, ro, offset=XXXX disk_image.dd

/mnt/mount_point **D**Partition information can be

obtained

Gfdisk –I disk_image.dd

Jfdisk –lu disk_image.dd

□mmls –t type disk_image.dd

🗅 n the TSK toolset

Either work on the whole image

Dse the "offset" parameter

□Or, split the image to individual partitions and then mount them separately

Ddd if=disk_image.dd bs= 512 skip=xxx count=xxx

of=partition.dd 70

Evidence Collection

Memory dump;

Network status;

Process dump;

Dther system information;

Disk images;

Forensic analysis done on the images NOT on the original disk;

After Evidence Collection

Mount disk/partition images on a trusted system

□Timeline analysis with *TSK*

What had happened?

□ Media (e.g. file system) analysis with TSK

What was modified/changed and or left?

□String search on both allocated and

unallocated areas with *strings* Data

recovery with TSK

METTITUTIONS

Artifact (malware) analysis

□ **T**o understand the function of the malware

□Sharing findings with relevant parties

72

Incident Handling Lifecycle

Eradication Step 4 Eradiation

Remove compromised

accounts

Revoke compromised credentials

Remove malware/ artifact left over by the attackers

Restore from most recent

compromised, rebuild system

from scratch **H**arden, **patch**

system to prevent it from re

occurrence

Incident Handling Lifecycle Recovery

Put system back to production in a control manner

Decision should be

made by management

Closely monitoring the

system

Incident Handling Lifecycle Step 6 – Lesson learned

Know what went right

- and what went wrong
- **L**earning & improving
- A post-mortem meeting/discussion