SNS COLLEGE OF ENGINEERING

(Autonomous)
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19EC502 - TRANSMISSION LINES AND ANTENNAS

III YEAR/ V SEMESTER
UNIT 1- TRANSMISSION LINE THEORY
TOPIC - SINGLE STUB MATCHING

MATCHING NETWORKS

What is the purpose of matching networks of a transmission line?

MATCHING NETWORKS

- When a high frequency line is terminated in its characteristic impedance R_{0}, it is operated as a smooth line
- Under such conditions, - there will be no reflections
- maximum power delivered to the load
- increased efficiency
- But in practice the loads such as antennas do not provide resistances equal to R_{0} of the line
- So it is necessary to add some of the impedance matching networks between the line and load

STUB MATCHING

- One of the impedance matching is to use open or short circuited stubs
- A stub of suitable length is connected in parallel with the line at a certain distance from the load
- Because of parallel connection of stub, it is convenient to work with admittances

(0)

(b)

STUB MATCHING - TYPES

1. Single stub matching - A stub is connected in parallel to the transmission line at a fixed distance from load
2.Double stub matching - A type of matching where two stubs are shunted to main transmission line on a fixed distance

SINGLE STUB MATCHING - PRINCIPLE

- The input impedance at any point on a line is given by $Z_{S}=R_{0} \pm j X$
- The input admittance is

$$
Y_{S}=G_{0} \pm j B
$$

- Then the short circuited stub of $+\mathrm{j} B$ is connected at that point across the transmission line
- Then the total admittance is given by,

$$
\begin{aligned}
& Y_{S}=G_{0} \pm j B \mp j B=G_{0} \\
& Z_{S}=R_{0}
\end{aligned}
$$

- Thus the line from the source to the point is then terminated in R_{0}. It act as a smooth line

SINGLE STUB MATCHING - DESIGN PARAMETERS

- Design parameters
- The point of stub connection
- Length of the stub

SINGLE STUB MATCHING - DIAGRAM

LENGTH OF THE STUB

$$
\begin{aligned}
& L=\frac{\lambda}{2 \pi} \tan ^{-1}\left(\frac{\sqrt{1-|k|^{2}}}{2|k|}\right) \\
& \cos \rangle \\
& L=\frac{\lambda}{2 \pi} \tan ^{-1} \frac{\sqrt{s}}{s-1}
\end{aligned}
$$

This is the length of the stub to be placed d meters towards the load from a point at which a Vmin existed before the attachment of the stub

DISTANCE OF THE STUB

$$
d= \pm \cos ^{-1}\left(\frac{s-1}{s+1}\right) \frac{\lambda}{4}
$$

$$
\pi
$$

The stub should be connected at this distance from d measured from either direction from a Vmin nearest to the load

SINGLE STUB MATCHING - PROBLEM

A 75 Ohm lossless line is to be matched to a $100-\mathrm{j} 80$ Ohms load with a shorted stub. Calculate the distance from the load, the stub length, and the necessary stub admittance.
Answer: Change z_{L} to admitance: Find $\mathrm{d}=$ distance to circle with real=1 as:
$\mathrm{d}=.4338-.3393=0.0941 \mathrm{or}$
$.0662-.1607=0.0941$ (both yield same d)
[or next intersection i.e. 1-jb :d=0.272l,]
Short stub:.25l-.124l=0.126l
Or 0.376l-.25l= 0.126 l (both yield same distance)
With $y_{\text {stub }}=-j .96 / 75^{*}=-j .0128 \mathrm{mhos}$

SINGLE STUB MATCHING - STEPS

The Complete Smith Chart
Black Magic Design

SINGLE STUB MATCHING - ASSIGNMENT PROBLEM

A load impedance $\mathrm{ZL}=25-\mathrm{j} 50 \mathrm{Ohms}$ is connected to a 50 Ohm transmission line. Insert a shunt element to eliminate reflections towards the sending end of the line. Insert a shunt element to eliminate reflections towards the sending end of the line.
Specify the insert location d (in wavelengths), the type of element, and its value, given that $\mathrm{f}=100 \mathrm{MHz}$

ADVANTAGES OF SHORT CIRCUITED STUB OVER OPEN CIRCUITED STUB

- The length of short circuited stub can be easily changed but it is not easy in an open circuited stub
- Because of the shorting plate at the end mechanical rigidity of a short circuited stub is better than an open circuited stub
- The open circuit in the open circuited stubs do not behave like a true open circuit
- Poses fabrication problem

THANK YOU

