

SNS COLLEGE OF ENGINEERING

(Autonomous) **DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING**

19EC502 – TRANSMISSION LINES AND ANTENNAS

III YEAR/ V SEMESTER

UNIT 1 – TRANSMISSION LINE THEORY

TOPIC 5 – REFLECTION FACTOR AND REFLECTION LOSS

REFLECTION FACTOR AND REFLECTION LOSS/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

>What will you say if the received signal at the load side is not same as the original signal at the transmitting side?

REFLECTION FACTOR AND REFLECTION LOSS/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

TYPES OF LINE LOSSES

Answer : Losses occurred in the line

Types of losses are,

 \succ Reflection loss ≻ Return loss ► Insertion loss

Reflection Coefficient

Reflection on a line not teemin

$$E = E_R (2_R + 2_0) \begin{bmatrix} e & f & f \\ 2_R \\ 2_R \end{bmatrix}$$

$$I = I_R (2_R + 2_0) \begin{bmatrix} e^{2S} & f \\ -2_R \\ 2_R \end{bmatrix}$$
The component varying with $e^{2S} = f \\ -2_R \\ -3_R \\ -3_R$

REFLECTION FACTOR AND REFLECTION LOSS/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

rated Pn Zo 1-25 - Zo + Zo ZR+ZO-)e ncident wave end to it approaches

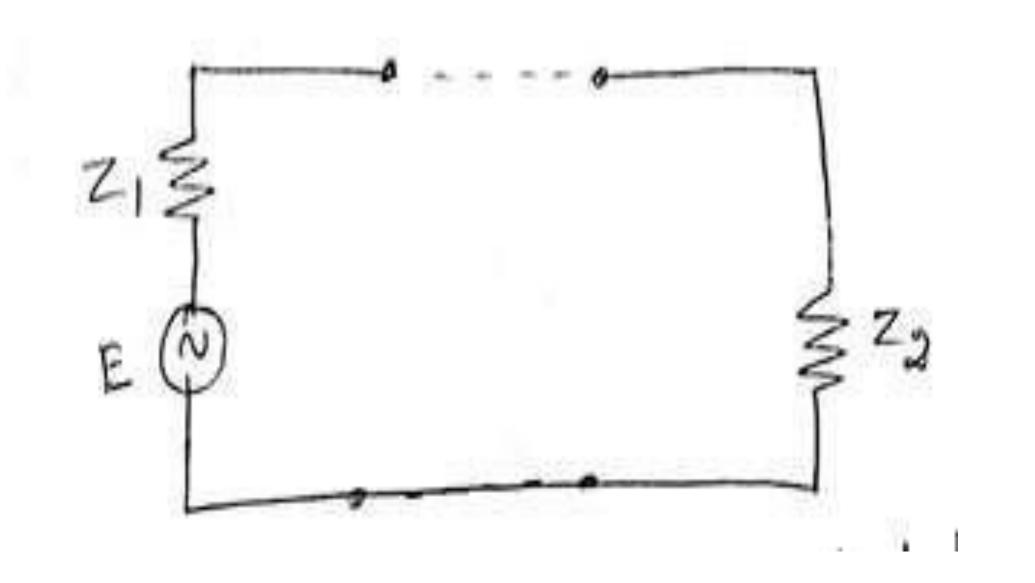
Reflection Coefficient

The component varying with e > reflected I wave progressing from the receiving end toward the sending end -> decreasing in amplifiede from the load copen carcust load) 1 > Reflected wave Incident

Reflection Coefficient

Reflection coefficient
The Ratio of amplitudes of the reflect
incident voltage waves at the receiving
the line is called the reflection con-

$$K = Reflected$$
 voltage at load
 $\vec{K} = \frac{2R-20}{2R+20}$
 $\vec{E} = \frac{E_{F}(2R+20)}{2Z_{P}} \left(e^{2S} + Ke^{-2S}\right)$
 $\vec{E} = \frac{D_{E}(2R+20)}{2Z_{0}} \left(e^{2S} - Ke^{-2S}\right)$


REFLECTION FACTOR AND REFLECTION LOSS/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

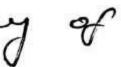
8/18/202 3

end of end of efficient.

FIG. Generator of impedance Z₁ connected to load Z₂

> The magnitude of reflection

- = the current actually flowing in the load under mismatched condition (I_2)
 - the current which would flow if the impedances were matched (I_2')
- Image matching (Transformer & Phase shifter)



According to the theory of Ideal transformer $\frac{I}{I_2} = \sqrt{\frac{Z_2}{Z_1}} \rightarrow 0$ under matched conditions $T_{2} = T_{1} \sqrt{\frac{z_{1}}{z_{2}}} = \frac{E_{1}}{2} \sqrt{\frac{z_{1}}{z_{2}}}$ $\left| \int f_{2} \right| = \frac{|E|}{|2\sqrt{2}|2_{2}|} \rightarrow 3$

Without Image matching

$$\begin{vmatrix} I_2 \end{vmatrix} = \frac{|E|}{|Z_1+Z_2|} = \frac{4}{|Z_1+Z_2|}$$

$$\therefore \left| \frac{T_2}{|T_2|} \right| = \frac{5}{|Z_1+Z_2|} = \frac{2\sqrt{1}}{|Z_1+Z_2|}$$

REFLECTION FACTOR AND REFLECTION LOSS/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

 $z_1 z_2$ ZI+Z2| Z>K reflection factor

 \succ The change in current in the load due to reflection at the mismatched junction is called the reflection factor

$$\mathbf{k} = \begin{vmatrix} \mathbf{\hat{2}} \sqrt{\mathbf{Z}_1 \mathbf{Z}_2} \\ \mathbf{Z}_1 + \mathbf{Z}_2 \end{vmatrix}$$

 \succ Reflection loss is defined as the number of nepers or decibels by which the current in the load under image matched conditions would exceed the current actually flowing in the load (reciprocal of k)

Reflection loss, nepers = $\ln \frac{|\mathbf{Z}_1 + \mathbf{Z}_2|}{2\sqrt{|\mathbf{Z}_1|\mathbf{Z}_2|}}$

Reflection loss, decibels = $20 \log |\mathbf{Z}_1 + \mathbf{Z}_2|$ $2\sqrt{7.7.7.5}$

EFFECTS OF REFLECTION ON A LINE

- Reduction of line efficiency
- Power loss
- Cause echos
- Generator power and frequency will change
- > Noise disturbance

