

SNS COLLEGE OF ENGINEERING

(Autonomous) **DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING**

19EC502 – TRANSMISSION LINES AND ANTENNAS

III YEAR/ V SEMESTER

UNIT 1 – TRANSMISSION LINE THEORY

TOPIC 4.1 – LOADING OF TRANSMISSION LINES

LOADING OF TRANSMISSION LINES/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

1/18

LOADING

 \succ Loading of transmission lines is used to achieve distortion less condition in practical transmission lines >Anyway it is impossible to make practical transmission line as distortion less but we can minimize distortion

LOADING OF TRANSMISSION LINES/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

CONDITION FOR A DISTORTIONLESS LINE

Condition for a distortion less transmission line is

$$\frac{\mathbf{R} = \mathbf{G}}{\mathbf{L} \quad \mathbf{C}}$$

 \succ Reduce R – reduce R/L to the same values as G/C but this requires large conductors

- \succ Reduce C requires an increase in the spacing between the conductors but cable size and cost increased
- Increase G increase leakage loss & it is undesirable
- So the inductance L is increased

LOADING AND LOADED LINES

 \succ To achieve the above condition, the series inductance L could be increased by inserting artificial inductance in series with the line. This process is known as loading and such lines are called loaded lines

FIG. LOADING COIL

122

TYPES OF LOADING

- > Loading is mainly done on telephone cables carrying voice signals
- > Types of loading are (i) Continuous loading (ii) Lumped loading (iii) Patch loading

CONTINUOUS LOADING

- \succ The inductance of the line is increased uniformly along the length of the line
- \succ A type of iron or some other high permeability magnetic material in the form of a wire or tape is wound around the copper conductors
- \succ This will increase the permeability of the surrounding medium which in turn increases the inductance of the line

CONTINUOUS LOADING

> Advantages

(i) Attenuation is constant over a wide frequency range (ii) Used only in submarine cables

> Disadvantages

(i) Very expensive (ii) Possibility of transmission delays (iii) Eddy current and hysteresis losses increase with frequency, thus increasing the value of R

7/18

LUMPED LOADING

 \succ The inductance coils are wound on a toroidal core and inserted periodically in series with the line > This type of core produces coil of small dimension, high inductance and low eddy current losses

LUMPED LOADING

> Advantages

- (i) Large value of inductance is possible with reduced attenuation
- (ii) Method of loading is more convenient
- (iii) Eddy current and hysteresis losses are less

PATCH LOADING

- > Employs sections of continuous loaded cable separated by sections of unloaded cable
- In submarine cables, patch loading is adequate to obtain the required reduction in attenuation

PATCH LOADING

> Advantages

(i) Advantage of loading is obtained (ii) Cost is greatly reduced (iii) Reduction in attenuation

EFFECT OF LOADING ON SECONDARY CONSTANTS

- > The characteristic impedance increases
- Attenuation constant is reduced
- \succ Phase constant β is increased
- Phase velocity is reduced

12/18

THANK YOU

LOADING OF TRANSMISSION LINES/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

