SNS COLLEGE OF ENGINEERING

19EC502 - TRANSMISSION LINES AND ANTENNAS

III YEAR/ V SEMESTER

UNIT 1 - TRANSMISSION LINE THEORY

TOPIC 2 - GENERAL SOLUTION OF TRANSMISSION LINE

WHAT IS THE DIFFERENCE BETWEEN THESE CIRCUITS?

FIG 1. ELECTRONIC CIRCUIT

FIG 2. TRANSMISSION LINE MODEL

LUMPED \& DISTRIBUTED NETWORKS

LUMPED NETWORK (FIG 1)

DISTRIBUTED NETWORK (FIG 2)

A network which is formed by A network which is formed by using lumped components like resistors, sections of transmission lies. capacitors and inductors.
Parameters can be easily determines Parameters are distributed throughout because they are fixed at discrete the length of a transmission line. points in the circuit.
One can easily recognize the It is difficult to recognize the presence presence of the components like of the components like resistor, resistor, capacitor and inductor. capacitor and inductor.

EX. Ordinary electric circuits	Ex. Transmission Lines

TRANSMISSION LINE GENERAL SOLUTION

Transmission line General solution is used to
$>$ Find voltage and current at any point on a line

TRANSMISSION LINE GENERAL SOLUTION

Line parameters

$\mathrm{R}=$ series resistance, ohms per unit length of line
(includes both wires)
$\mathrm{L}=$ series inductance, henrys per unit length of line
$\mathrm{C}=$ capacitance between conductors, faradays per unit length of line
$\mathrm{G}=$ shunt leakage conductance between conductors, mhos per unit length of line
$\mathrm{Z}=$ series impedance $=\mathrm{R}+\mathrm{j} \omega \mathrm{L}$
$\omega \mathrm{L}=$ series reactance, ohms per unit length of line

TRANSMISSION LINE GENERAL SOLUTION

Line parameters

$\mathrm{Y}=$ shunt admittance, ohms per unit length of line

$$
\mathrm{Y}=\mathrm{G}+\mathrm{j} \omega \mathrm{C}
$$

$\omega \mathrm{C}=$ shunt susceptance, mhos per unit length of line
$S=$ distance to the point of observation, measured from the receiving end of the line
$\mathrm{I}=$ Current in the line at any point
$\mathrm{E}=$ voltage between conductors at any point
l = Length of the line

TRANSMISSION LINE GENERAL SOLUTION

$>$ For finding Transmission line general solution a small section of a long transmission line is taken as shown in the diagram.
$>$ Then modelled each small segment with a small series resistance, series inductance, shunt conductance, and shunt capacitance:

TRANSMISSION LINE GENERAL SOLUTION

TRANSMISSION LINE GENERAL SOLUTION

Voltage drop in the Line

$>$ This incremental section is of length of ds and carries a current I.
$>$ The series line impedance being Z ohms and the voltage drop in the length ds is

$$
\begin{equation*}
\mathrm{dE}=\mathrm{IZ} \mathrm{ds} \tag{1}
\end{equation*}
$$

$\mathrm{dE}=\mathrm{IZ}$
ds

TRANSMISSION LINE GENERAL SOLUTION

Current across the Line

$>$ The admittance of the line is Yds mhos.
$>$ The current dI that follows across the line or from one conductor to the other is

$$
\begin{align*}
& \mathrm{dI}=\mathrm{EYds} \tag{3}\\
& \frac{\mathrm{dI}}{\mathrm{ds}}=\mathrm{EY} \tag{4}
\end{align*}
$$

The equations 2 and 4 are differentiated with respect to " s "

$$
\frac{d^{2} E}{d s^{2}}=z \frac{d P}{d s} \rightarrow(5
$$

$$
\begin{aligned}
& d^{2} E \text { subs eq } 4 \text { in eq (5) } \\
& d s^{2} \\
& =\text { Ley } \rightarrow 6
\end{aligned}
$$

d

$$
\begin{aligned}
& \frac{d^{2} I}{d s^{2}}=y \frac{d E}{d s} \rightarrow(7) \\
& \text { subs eq (2) } \\
& \frac{d^{2} I}{d s^{2}}=y I z \rightarrow \text { (8) }
\end{aligned}
$$

TRANSMISSION LINE GENERAL SOLUTION

$$
\begin{gather*}
\left(m^{2}-z y\right) E=0 \\
m^{2}-z y=0 \\
m^{2}=z y \\
m= \pm \sqrt{z y} \\
E=A e^{\sqrt{z y s}} \rightarrow B e^{-\sqrt{z y s} \rightarrow(9)} \\
I=C e^{\sqrt{z y s}+D e^{-\sqrt{z y} s} \rightarrow(10)} \tag{10}
\end{gather*}
$$

Where A, B, C, D are arbitrary constants of integration.

TRANSMISSION LINE GENERAL SOLUTION

Assigning conditions to find the solution
Since the distance is measured from the receiving end of the line

$$
s=0, \mathrm{I}=\mathrm{IR} \& \mathrm{E}=\mathrm{ER}
$$

Then equations (9) \& (10) becomes

$$
\begin{align*}
& E R=A+B \tag{11}\\
& I R=C+D \tag{12}
\end{align*}
$$

TRANSMISSION LINE GENERAL SOLUTION

$$
\begin{align*}
& \frac{d E}{d s}=A \sqrt{z y} e^{\sqrt{2 y} s}-B e^{-\sqrt{2 y} s} \times \sqrt{z y} \\
& \frac{d I}{d s}=C \sqrt{z y} e^{\sqrt{z y} s}-D \sqrt{z y} e^{-\sqrt{z y} s} \tag{4}\\
& I Z=A \sqrt{2 y} e^{\sqrt{z y s}}-B e^{-\sqrt{z y s} \cdot \sqrt{z y}} \quad\left(\frac{d E}{d s}=I z\right) \\
& I=A \sqrt{\frac{y}{z}} e^{\sqrt{z y s}}-B \sqrt{\frac{y}{z}} e^{-\sqrt{z y s}} \tag{15}
\end{align*}
$$

TRANSMISSION LINE GENERAL SOLUTION

$$
\begin{aligned}
& \text { Eqs (5) \& (I6 } s=0, E=E_{R} \& J=I_{R} \\
& B_{R}=A \sqrt{\frac{Y}{z}}-B \sqrt{Y / Z} \rightarrow 17 \\
& B_{R}=c \sqrt{\frac{z}{y}}-D \sqrt{\frac{z}{y}} \rightarrow 18 \\
& \text { Multiply eq (12) by } \sqrt{\frac{z}{y}} \\
& I_{R} \sqrt{\frac{z}{y}}=c \sqrt{\frac{z}{y}}+D \sqrt{\frac{z}{y}} \\
& \text { eq (16) } \rightarrow E_{R}=c \sqrt{\frac{z}{y}}-P \sqrt{\frac{z}{y}} \\
& B_{R}+P_{R} \sqrt{\frac{z}{y}}=2 c \sqrt{\frac{z}{y}} \\
& \} C=\frac{F_{R}}{2} \sqrt{\frac{y}{z}}+I_{R} \\
& A, B, D \text { also. }
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{E_{R}}{2}+\frac{E_{R}}{2} \sqrt{\frac{E_{R}}{2 R}}=\frac{E_{R}}{2}\left(1+\frac{z_{R}}{Z_{R}}\right) \\
& B=\frac{E_{R}}{2}-\frac{I_{R}}{2} \sqrt{\frac{Z}{Y}}=\frac{E_{R}}{2}\left(\frac{1-\frac{z_{0}}{Z_{R}}}{2}\right) \\
& C=\frac{I_{R}}{2}+\frac{E_{R}}{2} \sqrt{Y / z}=\frac{I_{R}}{2}\left(1+\frac{z_{R}}{Z_{0}}\right) \\
& D=\frac{I_{R}}{2}-\frac{E_{R}}{2} \sqrt{Y / Z}=\frac{I_{R}}{2}\left(1-\frac{Z_{R}}{Z_{0}}\right)
\end{aligned}
$$

TRANSMISSION LINE GENERAL SOLUTION

$$
\begin{aligned}
& F=A e^{\sqrt{z y} s}+B e^{-\sqrt{z y} s} \\
& =\frac{E_{R}}{2}\left(1+\frac{z_{0}}{z_{R}}\right) e^{\sqrt{z y} s}+\frac{B_{R}}{2}\left(1-\frac{z_{0}}{z_{R}}\right)^{-\sqrt{z / s}} \\
& =\frac{E_{R}}{2}\left[\left(1+\frac{z_{0}}{z R}\right) e^{\sqrt{z y s}}+\left(1-\frac{z_{0}}{z R}\right) e^{-\sqrt{z y} s}\right] \\
& =\frac{R_{R}}{2}\left[\frac{z_{R}+z_{0}}{z_{R}} e^{\sqrt{z Y} s}+\left(\frac{Z_{R}-z_{0}}{z_{R}}\right) e^{-\sqrt{z y} s}\right] \\
& E=\frac{B_{R}}{2 z_{R}}\left(z_{R}+z_{0}\right)\left[e^{\sqrt{z y S}+\frac{\left(z_{R}-z_{0}\right)}{e-\sqrt{z Y S}}}\left(z_{R}+z_{0}\right)\right] \\
& I=\frac{I_{R}\left(z_{R}+z_{0}\right)}{2 z_{0}}\left[e^{\sqrt{z y s}}-\left(\frac{z_{R}-z_{0}}{z_{R}+z_{0}}\right) e^{-\sqrt{z_{Y} s}}\right]
\end{aligned}
$$

TRANSMISSION LINE GENERAL SOLUTION

$$
\begin{aligned}
& E=A e^{\sqrt{2 y} s}+B e^{-\sqrt{z y} s} \\
& =\frac{E_{R}}{2}\left[\left(1+\frac{z_{0}}{z_{R}}\right) e^{\sqrt{z y}}+\frac{E_{R}}{2}\left[\left(1-\frac{z_{0}}{z_{R}}\right) e^{-\sqrt{z y s}]}\right.\right. \\
& =\frac{E_{R}}{2}\left[e^{\left.\left.\sqrt{z y s}+\frac{z_{0}}{z R} e^{\sqrt{2 y} s}+e^{-\sqrt{z y} s}-\frac{z_{0}}{z R} e^{-\sqrt{z y s}}\right]\right]}\right. \\
& =\frac{E_{R}}{2}\left[\left(e^{\sqrt{2 y} s}+e^{-\sqrt{2 y s}}\right)+\frac{20}{2 r}\left(e^{\left.\sqrt{z y}-e^{-\sqrt{z y s}}\right]}\right]\right. \\
& =E_{R}\left(\frac{e^{\sqrt{2 y} s}+e^{-\sqrt{2 y} s}}{2}\right)+\frac{E_{R} z_{0}}{z / R}\left(\frac{e^{\sqrt{z y s}}-e^{-\sqrt{z y s}}}{2}\right) \text {. } \\
& \begin{array}{l}
n=E_{R} \cos h \sqrt{z y} s+I_{R} z_{0} \sinh \sqrt{z y} s \\
I=I_{R} \cos h \sqrt{2 y} s+\frac{E_{R}}{z_{0}} \sin h \sqrt{z y} s
\end{array}
\end{aligned}
$$

TRANSMISSION LINE GENERAL SOLUTION

Final Solution

After simplifying the above equations we get the final and very useful form of equations for voltage and current at any point on a line, and are solutions to the wave equation.

$$
\begin{aligned}
& E=E_{1} \cosh \sqrt{27 t}+I_{2} Z_{\sinh } \sqrt{27 t}
\end{aligned}
$$

The above equations are known as general solution of the transmission line and are the equations of voltage and current at any point on a transmission line.,

APPLICATIONS OF TRANSMISSION LINES

1.They are used to transmit signal i.e. EM Waves from one point to another.
2. They can be used for impedance matching purpose.
3. They can be used as stubs by properly adjusting their lengths.

THANK YOU

