Approved by AICTE \& Affiliated to Anna University, Chennai

Mass of Inertia

Mass Moments of Inertia ($)$: Important in Rigid Body Dynamics

- I is a measure of distribution of mass of a rigid body w.r.t.the axis in question (constant property for thataxis).
- Units are (mass)(length) ${ }^{2} € \mathrm{~kg} . \mathrm{m}^{2}$

Consider a three dimensional body of mass m Mass moment of inertia of this body about axis $\mathrm{O}-\mathrm{O}$:

$$
I=\int r^{2} d m
$$

Integration is over the entire body.
$r=$ perpendicular distance of the mass element $d m$ from the axis $\mathrm{O}-\mathrm{O}$

Moments of Inertia of Thin Plates

- For a thin plate of uniform thickness t and homogeneous material of density ρ, the mass moment of inertia with respect to axis $A A^{\prime}$ contained in the plate is

$$
\begin{aligned}
I_{A A^{\prime}} & =\int r^{2} d m=\rho t \int r^{2} d A \\
& =\rho t I_{A A^{\prime}, \text { area }}
\end{aligned}
$$

- Similarly, for perpendicular axis $B B^{\prime}$ which is also contained in the plate,

$$
I_{B B^{\prime}}=\rho t I_{B B^{\prime}, \text { area }}
$$

- For the axis $C C^{\prime}$ which is perpendicular to the plate,

$$
\begin{aligned}
I_{C C^{\prime}} & =\rho t J_{C, \text { area }}=\rho t\left(I_{A A^{\prime}, \text { area }}+I_{B B^{\prime}, \text { area }}\right) \\
& =I_{A A^{\prime}}+I_{B B^{\prime}}
\end{aligned}
$$ Approved by AICTE \& Affiliated to Anna University, Chennai

Moments of Inertia of Thin Plates

- For the principal centroidal axes on a rectangular plate,

$$
\begin{aligned}
& I_{A A^{\prime}}=\rho t I_{A A^{\prime}, \text { area }}=\rho t\left(\frac{1}{12} a^{3} b\right)=\frac{1}{12} m a^{2} \\
& I_{B B^{\prime}}=\rho t I_{B B^{\prime}, \text { area }}=\rho t\left(\frac{1}{12} a b^{3}\right)=\frac{1}{12} m b^{2} \\
& I_{C C^{\prime}}=I_{A A^{\prime}, \text { mass }}+I_{B B^{\prime}, \text { mass }}=\frac{1}{12} m\left(a^{2}+b^{2}\right)
\end{aligned}
$$

- For centroidal axes on a circular plate,

$$
I_{A A^{\prime}}=I_{B B^{\prime}}=\rho t I_{A A^{\prime}, \text { area }}=\rho t\left({ }_{1}^{1} \tau r^{4}\right)={ }_{4}^{1} m r^{2}
$$ Approved by AICTE \& Affiliated to Anna University, Chennai

Moments of Inertia of a 3D Body by Integration

- Moment of inertia of a homogeneous body is obtained from double or triple
 integrations of the form

$$
I=\rho \int r^{2} d V
$$

- For bodies with two planes of symmetry, the moment of inertia may be obtained from a single integration by choosing thin slabs perpendicular to the planes of symmetry for $d m$.
$d I_{x}=\frac{1}{2} r^{2} d m$
$d I_{y}=d I_{y^{\prime}}+x^{2} d m=\left(\frac{1}{4} r^{2}+x^{2}\right) d m$
$d I_{z}=d I_{z^{\prime}}+x^{2} d m=\left(\frac{1}{4} r^{2}+x^{2}\right) d m$
- The moment of inertia with respect to a particular axis for a composite body may be obtained by adding the moments of inertia with respect to the same axis of the components.

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE \& Affiliated to Anna University, Chennai
www.snsgroups.com
Q. No. Determine the moment of inertia of a slender rod of length L and mass m with respect to an axis which is perpendicular to the rod and passes through one end of the rod.

Solution

$$
\begin{gathered}
d m=\frac{m}{L} d x \\
I_{y}=\int x^{2} d m=\int_{0}^{L} x^{2} \frac{m}{L} d x=\left[\frac{m}{L} \frac{x^{3}}{3}\right]_{0}^{L} \quad I_{y}=\frac{1}{3} m L^{2}
\end{gathered}
$$

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107

Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai
Q. No. For the homogeneous rectangular prism shown, determine the moment of inertia with respect to z axis

Solution
$d m=\rho b c d x$

$$
d I_{z^{\prime}}=\frac{1}{12} b^{2} d m
$$

$d I_{z}=d I_{z^{\prime}}+x^{2} d m=\frac{1}{12} b^{2} d m+x^{2} d m=\left(\frac{1}{12} b^{2}+x^{2}\right) \rho b c d x$
$I_{z}=\int d I_{z}=\int_{0}^{a}\left(\frac{1}{12} b^{2}+x^{2}\right) \rho b c d x=\rho a b c\left(\frac{1}{12} b^{2}+\frac{1}{3} a^{2}\right)$
$I_{z}=m\left(\frac{1}{12} b^{2}+\frac{1}{3} a^{2}\right) \quad I_{z}=\frac{1}{12} m\left(4 a^{2}+b^{2}\right)$

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

MI of some common geometric shapes

