

A mass of 100kg is lifted by a rope on a cylinder of 150mm diameter as shown in Figure. The coefficient of friction is 0.20 and velocity 30 m/s calculate,

- (i) The necessary force to be applied to lift the load
- (ii) The Torque at the cylinder surface
- (iii) Power transmitted

Solution :

Given $T_1 = 100 \times 9.81 = 981 N$

Angle of contact $\theta = 90^{\circ}$

$$= 90^{0} \times \frac{\pi}{180} rad$$
$$= \frac{\pi}{2} rad$$

Using the equation,

$$\frac{T_1}{T_2} = e^{\mu\theta}$$
$$= e^{\left(0.2 \times \frac{\pi}{2}\right)} = \frac{981}{T_2}$$

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE & Affiliated to Anna University, Chennai

 $T_2 = 716.58 N$

Torque = $(T_1 - T_2) \times radius$

Torque =
$$(981 - 716.58) \times \left(\frac{0.15}{2}\right)$$

= 19.83Nm

Power transmitted $= (T_1 - T_2) \times V$

 $= (981 - 716.58) \times 30$

= 7932.6 Nm/s