SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

Problem 13:

A mass of 100 kg is lifted by a rope on a cylinder of 150 mm diameter as shown in Figure. The coefficient of friction is 0.20 and velocity $30 \mathrm{~m} / \mathrm{s}$ calculate,
(i) The necessary force to be applied to lift the load
(ii) The Torque at the cylinder surface
(iii) Power transmitted

Solution :

Given $T_{1}=100 \times 9.81=981 N$
Angle of contact $\theta=90^{\circ}$

$$
\begin{gathered}
=90^{\circ} \times \frac{\pi}{180} \mathrm{rad} \\
=\frac{\pi}{2} \mathrm{rad}
\end{gathered}
$$

Using the equation,

$$
\begin{gathered}
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\mathrm{e}^{\mu \theta} \\
=\mathrm{e}^{\left(0.2 \times \frac{\pi}{2}\right)}=\frac{981}{T_{2}}
\end{gathered}
$$

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (P0), Coimbatore-641 107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

$$
T_{2}=716.58 \mathrm{~N}
$$

$$
\begin{aligned}
\text { Torque } & =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \times \text { radius } \\
\text { Torque } & =(981-716.58) \times\left(\frac{0.15}{2}\right) \\
& =19.83 \mathrm{Nm}
\end{aligned}
$$

Power transmitted $=\left(T_{1}-T_{2}\right) \times V$

$$
\begin{gathered}
=(981-716.58) \times 30 \\
=7932.6 \mathrm{Nm} / \mathrm{s}
\end{gathered}
$$

