SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

Wedge friction

A wedge is a piece of wood or metal, usually of a triangular or trapezoidal in cross-section, used for lifting loads or for slight adjustments like tightening keys for shafts.

Equilibrium of wedge

$F_{1}=\mu_{1} N_{1} ; F_{2}=\mu_{2} N_{2}$
$\mu_{1} \& \mu_{2}$ are the co-efficients of friction on the edges AC and AB
Only in wedge problems the reaction components are combined to a single resultant R
$R_{1} \& R_{2}$ drawn on the wedges
Where $R_{1}=\sqrt{F_{1}{ }^{2}+N_{1}{ }^{2}}$ and $R_{2}=\sqrt{F_{2}{ }^{2}+N_{2}{ }^{2}}$

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

Equilibrium of body

Note:

1. Always draw the freebody diagram of the wedge first, then draw the freebody diagram of the block.
2. But, while solving, if the load is given solve freebody of block first and if the force P is
given, solve the freebody of wedge first.
3. Self-weight of the wedge is neglected.

Problem 8:

A block overlaying a 10^{0} wedge on a horizontal floor and leaning against a vertical wall and weighting 1500 N is to be raised by applying a horizontal force to the wedge. Assuming coefficient of friction between all the surfaces is contact to be 0.3 , determine the minimum horizontal force to be applied to raise the block.

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

Solution:

Angle of wedge $=10^{0}$
$\mathrm{W}=1500 \mathrm{~N}$
$\mu=0.3$

$$
\begin{gathered}
\mu=\tan \phi \\
\phi=\tan ^{-1}(0.3)=16.69^{0}
\end{gathered}
$$

Consider FBD of block

Applying $\sum \mathrm{H}=0(\rightarrow+)$
$R_{3} \cos 16.69-R_{2} \cos 63.31=0$
$0.9578 \mathrm{R}_{3}=0.4491 \mathrm{R}_{2}=0$
$\mathrm{R}_{3}=0.468 \mathrm{R}_{2}$

Applying $\sum \mathrm{V}=0(\uparrow+)$
$-R_{3} \sin 16.69-1500+R_{2} \sin 63.31=0$
$0.893 \mathrm{R}_{2}-0.287 \mathrm{R}_{3}=1500$

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

Sub $\mathrm{R}_{3}=0.468 \mathrm{R}_{2}$
$0.893 \mathrm{R}_{2}-\left(0.468 \mathrm{R}_{2} \times 0.287\right)=1500$
$\mathrm{R}_{2}=1977 \mathrm{~N}$
$\therefore \mathrm{R}_{3}=0.468 \times 1977$
$\mathrm{R}_{3}=925 \mathrm{~N}$

Consider FBD of wedge

Applying $\sum \mathrm{V}=0(\uparrow+)$
$R_{1} \sin 73.31-R_{2} \sin 63.31=0$
$R_{1}=1977 \sin 63.3 / \sin 73.1$

$$
\begin{gathered}
\mathrm{R}_{1}=1846 \mathrm{~N} \\
\text { Applying } \sum H=0(\rightarrow+) \\
\mathrm{R}_{2} \cos 63.31+\mathrm{R}_{1} \cos 73.31-\mathrm{P}=0 \\
\mathrm{P}=1977 \cos 63.1+1846 \cos 73.1
\end{gathered}
$$

$\mathrm{P}=1431 \mathrm{~N}$

