SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC513 - IMAGE PROCESSING AND COMPUTER VISION
III YEAR / V SEMESTER
Unit I- DIGITAL IMAGE FUNDAMENTALS AND
TRANSFORMS
Topic: SVD transform

Singular Value Decomposition

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix \mathbf{A}, algorithm to find matrices \mathbf{U}, \mathbf{V}, and \mathbf{W} such that
$\mathbf{A}=\mathbf{U W} \mathbf{V}^{\mathrm{T}}$
\mathbf{U} is $m \times n$ and orthonormal
\mathbf{W} is $n \times n$ and diagonal
\mathbf{V} is $n \times n$ and orthonormal

- Treat as black box: code widely available In Matlab:
$[\mathrm{U}, \mathrm{W}, \mathrm{V}]=\operatorname{svd}(\mathrm{A}, 0)$
- The w_{i} are called the singular values of \mathbf{A}
- If \mathbf{A} is singular, some of the w_{i} will be 0
- In general $\operatorname{rank}(\mathbf{A})=$ number of nonzero w_{i}
- SVD is mostly unique (up to permutation of singular values, or if some w_{i} are equal)
- Application \#1: inverses
- $\mathrm{A}^{-1}=\left(\mathbf{V} \mathrm{T}_{)}-1 \mathbf{W}^{-1} \mathbf{U}^{-1}=\mathbf{V} \mathbf{w}^{-1} \mathbf{U}_{\mathbf{U}} \mathrm{T}\right.$
- Using fact that inverse $=$ transpose for orthogonal matrices
- Since \mathbf{W} is diagonal, \mathbf{W}^{-1} also diagonal with reciprocals of entries of \mathbf{W}

Singular Value Decomposition aka SVD is one of many matrix decomposition

Technique that decomposes a matrix into 3 sub-matrices namely $\mathrm{U}, \mathrm{S}, \mathrm{V}$ where U is the left eigenvector, S is a diagonal matrix of singular values and V is called the right eigenvector. We can reconstruct SVD of an image by using linalg.svd() method of NumPy module.

Syntax:

linalg.svd(matrix, full_matrices=True, compute_uv=True, hermitian=False)

Parameters:

1.matrix : A real or complex matrix of size >2.
2.full_matrices: If True the size of u and v matrices are $m \times n$, if False then the shape of u and v matrices are $m x k$, where k is non-zero values only.
3.compute_uv: Takes in boolean value to compute u and v matrices along with s matrix.
4.hermitian: By default matrix is assumed to be Hermitian if it contains real-values, this is used internally for efficiently computing the singular values.

Output:

Any Query????

Thank you......

