

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC513 – IMAGE PROCESSING AND COMPUTER VISION III YEAR / V SEMESTER

Unit I- DIGITAL IMAGE FUNDAMENTALS AND TRANSFORMS **Topic :** SVD transform

SVD transform/ 19EC513/ IMAGE PROCESSING AND COMPUTER VISION /Mr.S.HARIBABU/ECE/SNSCE

1

Singular Value Decomposition

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix **A**, algorithm to find matrices **U**, **V**, and **W** such that
 - $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^{\mathsf{T}}$ $\mathbf{U} \text{ is } m \times n \text{ and orthonormal}}$ $\mathbf{W} \text{ is } n \times n \text{ and orthonormal}}$ $\mathbf{V} \text{ is } n \times n \text{ and orthonormal}}$ $\mathbf{A} = \left(\begin{array}{c} \mathbf{U} \\ \mathbf{U} \\ \mathbf{U} \\ \mathbf{U} \end{array} \right) \left(\begin{array}{c} w_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & w_{n} \end{array} \right) \left(\begin{array}{c} \mathbf{V} \\ \mathbf{V} \end{array} \right)^{\mathsf{T}}$
 - Treat as black box: code widely available In Matlab:

[[]U,W,V] = svd(A,0)

- The w_i are called the singular values of **A**
- If **A** is singular, some of the w_i will be 0
- In general $rank(\mathbf{A}) =$ number of nonzero w_i
- SVD is mostly unique (up to permutation of singular values, or if some w_i are equal)
- Application #1: inverses
- $A^{-1}=(vT)^{-1}w^{-1}U^{-1} = vw^{-1}UT$
 - Using fact that inverse = transpose for orthogonal matrices
 - Since W is diagonal, W^{-1} also diagonal with reciprocals of entries of W

Singular Value Decomposition aka SVD is one of many matrix decomposition Technique that decomposes a matrix into 3 sub-matrices namely U, S, V where U is the left eigenvector, S is a diagonal matrix of singular values and V is called the right eigenvector. We can reconstruct SVD of an image by using **linalg.svd()** method of NumPy module.

Syntax:

linalg.svd(matrix, full_matrices=True, compute_uv=True, hermitian=False)

Parameters:

1.matrix : A real or complex matrix of size > 2.

2.full_matrices: If True the size of u and v matrices are m x n , if False then the shape of u and v matrices are m x k , where k is non-zero values only.

3.compute_uv: Takes in boolean value to compute u and v matrices along with s matrix.

4.hermitian: By default matrix is assumed to be Hermitian if it contains real-values, this is used internally for efficiently computing the singular values.

Image Used:

Output:

17-08-2023

SVD transform/ 19EC513/ IMAGE PROCESSING AND COMPUTER VISION /Mr.S.HARIBABU/ECE/SNSCE

Any Query????

Thank you.....

SVD transform/ 19EC513/ IMAGE PROCESSING AND COMPUTER VISION /Mr.S.HARIBABU/ECE/SNSCE