

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

Solenoidal vector

A vector \vec{F} is said to be solenoidal if $div \vec{F} = 0$ (i.e) $\nabla \cdot \vec{F} = 0$

Curl of a vector function

If $\vec{F}(x,y,z)$ is a differentiable vector point function defines at each point (x,y,z) in some region of space, then the curl of \vec{F} is defined by

Curl
$$\vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

$$= \vec{i} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) - \vec{j} \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z} \right) + \vec{k} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)$$

Where $\vec{F} = F_1 \vec{\imath} + F_2 \vec{\jmath} + F_3 \vec{k}$

Note: $\nabla \times \vec{F}$ Is a vector point function.

Irrotational vector

A vector is said to be irrotational if Curl $\vec{F} = 0$ (i.e) $\nabla \times \vec{F} = 0$

Scalar potential

If \vec{F} is an irrotational vector, then there exists a scalar function ϕ such that $\vec{F} = \nabla \phi$. Such a scalar function is called scalar potential of \vec{F} .

Problems based on Divergence and Curl of a vector

Example: 2.21 If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ then find div \vec{r} and curl \vec{r} Solution:

Given
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

Now div $\vec{r} = \nabla \cdot \vec{r}$

$$= \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z)$$

$$= 1 + 1 + 1 = 3$$

And curl $\vec{r} = \nabla \times \vec{r}$

Given $\vec{F} = xy^2\vec{i} + 2x^2yz\vec{i} - 3yz^2\vec{k}$

$$\nabla \times \vec{\mathbf{r}} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z \end{vmatrix}$$

$$= \vec{\imath} \left(\frac{\partial}{\partial y} (z) - \frac{\partial}{\partial z} (y) \right) - \vec{\jmath} \left(\frac{\partial}{\partial x} (z) - \frac{\partial}{\partial z} (x) \right) + \vec{k} \left(\frac{\partial}{\partial x} (y) - \frac{\partial}{\partial y} (x) \right)$$

$$= \vec{\imath}(0) + \vec{\jmath}(0) + \vec{k}(0) = \vec{0}.$$

Example: 2.22 If $\vec{F} = xy^2\vec{\iota} + 2x^2yz\vec{\jmath} - 3yz^2\vec{k}$ find $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ at the point (1,-1, 1). Solution:

(i)
$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x}(xy^2) + \frac{\partial}{\partial y}(2x^2yz) + \frac{\partial}{\partial z}(-3yz^2)$$

$$= y^2 + 2x^2z - 6yz$$

$$\nabla \cdot \vec{F}_{(1,-1,1)} = 1 + 2 + 6 = 9$$
(ii) $\nabla \times \vec{r} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy^2 & 2x^2yz & 3yz^2 \end{vmatrix}$

$$= \vec{i} \left[\frac{\partial(-3yz^2)}{\partial y} - \frac{\partial(2x^2yz)}{\partial z} \right] - \vec{j} \left[\frac{\partial(-3yz^2)}{\partial x} - \frac{\partial(xy^2)}{\partial z} \right] + \vec{k} \left[\frac{\partial(2x^2yz)}{\partial x} - \frac{\partial(xy^2)}{\partial y} \right]$$

$$= \vec{i} \cdot (-3z^2 - 2x^2y) - \vec{j} \cdot (0) + \vec{k} \cdot (4xyz - 2xy)$$

$$\nabla \times \vec{F}_{(1,-1,1)} = \vec{i} \cdot (-3 + 2) + \vec{k} \cdot (-4 + 2)$$

$$= -\vec{i} - 2\vec{k}$$

Example: 2.23 If $\vec{\mathbf{F}} = (x^2 - y^2 + 2 \ x \ z)\vec{\mathbf{i}} + (x \ z - x \ y + y \ z)\vec{\mathbf{j}} + (z^2 + x^2)\vec{\mathbf{k}}$, then find $\nabla \cdot \vec{\mathbf{F}}$, $\nabla (\nabla \cdot \vec{\mathbf{F}})$, $\nabla \times \vec{\mathbf{F}}$, $\nabla \cdot (\nabla \times \vec{\mathbf{F}})$, and $\nabla \times (\nabla \times \vec{\mathbf{F}})$ at the point (1,1,1).

Given
$$\vec{F} = (x^2 - y^2 + 2xz)\vec{i} + (xz - xy + yz)\vec{i} + (z^2 + x^2)\vec{k}$$

(i)
$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x} (x^2 - y^2 + 2xz) + \frac{\partial}{\partial y} (xz - xy + yz) + \frac{\partial}{\partial z} (z^2 + x^2)$$

$$= (2x + 2z) + (-x + z) + 2z$$

$$= x + 5z$$

$$\therefore \nabla \cdot \vec{F}_{(1,1,1)} = 6$$

$$(ii) \nabla \times \vec{F} = \begin{vmatrix} \vec{1} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 - y^2 + 2xz & xz - xy + yz & z^2 + x^2 \end{vmatrix}$$

$$= \vec{1} \left[\frac{\partial (z^2 + x^2)}{\partial y} - \frac{\partial (xz - xy + yz)}{\partial z} \right] - \vec{j} \left[\frac{\partial (z^2 + x^2)}{\partial x} - \frac{\partial (x^2 - y^2 + 2xz)}{\partial z} \right] + \vec{k} \left[\frac{\partial (xz - xy + yz)}{\partial x} - \frac{\partial (x^2 - y^2 + 2xz)}{\partial y} \right]$$

$$= -(x + y)\vec{i} - (2x - 2x)\vec{j} + (y + z)\vec{k}$$

$$\therefore \nabla \times \vec{F}_{(1,1,1)} = -2\vec{i} + 2\vec{k}$$

(iii)
$$\nabla(\nabla \cdot \vec{F}) = \vec{i} \frac{\partial}{\partial x} (x + 5z) + \vec{j} \frac{\partial}{\partial y} (x + 5z) + \vec{k} \frac{\partial}{\partial z} (x + 5z)$$

= $\vec{i} + 5\vec{k}$

(iv)
$$\nabla \cdot (\nabla \times \vec{F}) = \frac{\partial}{\partial x} (-(x+y)) + \frac{\partial}{\partial y} (0) + \frac{\partial}{\partial z} (y+z)$$

= -1 + 0 + 1

$$\nabla \cdot (\nabla \times \vec{F})_{(1, 1, 1)} = 0$$

$$(v) \ \nabla \times (\nabla \times \vec{F}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -(x+y) & 0 & y+z \end{vmatrix}$$

$$: \nabla \times (\nabla \times \vec{F})_{(1,1,1)} = \vec{\iota} + \vec{k}$$

Example: 2.24 Find div \vec{F} and curl \vec{F} , where $\vec{F} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$ Solution:

Given
$$\vec{F} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$$

 $= \vec{i} \frac{\partial}{\partial x} (x^3 + y^3 + z^3 - 3xyz) + \vec{j} \frac{\partial}{\partial y} (x^3 + y^3 + z^3 - 3xyz) + \vec{k} \frac{\partial}{\partial z} (x^3 + y^3 + z^3 - 3xyz)$
 $\vec{F} = \vec{i} (3x^2 - 3yz) + \vec{j} (3y^2 - 3xz) + \vec{k} (3z^2 - 3xy)$
Now div $\vec{F} = \nabla \cdot \vec{F} = \frac{\partial}{\partial x} (3x^2 - 3yz) + \frac{\partial}{\partial y} (3y^2 - 3xz) + \frac{\partial}{\partial z} (3z^2 - 3xy)$
 $= 6x + 6y + 6z$
 $= 6(x + y + z)$
Curl $\vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3x^2 - 3yz & 3y^2 - 3xz & 3z^2 - 3xy \end{vmatrix}$
 $= \vec{i} [-3x + 3x] - \vec{j} [-3y + 3y] + \vec{k} [-3z + 3z]$
 $= \vec{0}$

Example: 2.25 Find div(grad ϕ) and curl(grad ϕ) at (1,1,1) for $\phi=x^2y^3z^4$ Solution:

Given
$$\varphi = x^2y^3z^4$$

$$grad \varphi = \nabla \varphi = \vec{i}\frac{\partial \varphi}{\partial x} + \vec{j}\frac{\partial \varphi}{\partial y} + \vec{k}\frac{\partial \varphi}{\partial z}$$

$$= \vec{i}(2xy^3z^4) + \vec{j}(x^23y^2z^4) + \vec{k}(x^2y^34z^3)$$
Div(grad φ) = $\nabla \cdot$ (grad φ)
$$= \frac{\partial}{\partial x}(2xy^3z^4) + \frac{\partial}{\partial y}(x^23y^2z^4) + \frac{\partial}{\partial z}(x^2y^34z^3)$$

$$= 2y^3z^4 + 6x^2yz^4 + 12x^2y^3z^4$$

$$\therefore \text{Div}(\text{grad }\varphi)_{(1,1,1)} = 2 + 6 + 12 = 20$$

$$\text{Curl}(\text{grad }\varphi) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy^3z^4 & x^23y^2z^4 & x^2y^34z^3 \end{vmatrix}$$

$$= \vec{i}(12x^2y^2z^3 - 12x^2y^2z^3) - \vec{j}(8xy^3z^3 - 8xy^3z^3) + \vec{k}(6xy^2z^4 - 6xy^2z^4)$$

$$= \vec{0}$$

$$\therefore \text{Curl } \text{grad} \varphi_{(1,1,1)} = \vec{0}$$

Vector Identities

1)
$$\nabla \cdot (\varphi \vec{F}) = \varphi(\nabla \cdot \vec{F}) + \vec{F} \cdot \nabla \varphi$$

2)
$$\nabla \times (\phi \vec{F}) = \phi(\nabla \times \vec{F}) + (\nabla \phi) \times \vec{F}$$

3)
$$\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$$

4)
$$\nabla \times (\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{A}(\nabla \cdot \overrightarrow{B}) - \overrightarrow{B}(\nabla \cdot \overrightarrow{A}) + (\overrightarrow{B} \cdot \nabla)\overrightarrow{A} - (\overrightarrow{A} \cdot \nabla)\overrightarrow{B}$$

5)
$$\nabla(\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times \vec{B}) - (\vec{A} \cdot \nabla)\vec{B} + \vec{B} \times (\nabla \times \vec{A}) - (\vec{B} \cdot \nabla)\vec{A}$$

6)
$$\nabla \cdot (\nabla \varphi) = \vec{0}$$

7)
$$\nabla \cdot (\nabla \times \vec{F}) = 0$$

8)
$$\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$$

9)
$$\nabla \cdot \nabla \varphi = (\nabla \cdot \nabla) \varphi = \nabla^2 \varphi$$
 where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}$ is a laplacian operator

1) If φ is a scalar point function, \vec{F} is a vector point function, then $\nabla \cdot (\varphi \vec{F}) = \varphi(\nabla \cdot \vec{F}) + \vec{F} \cdot \nabla \varphi$ Proof:

$$\begin{split} \nabla \cdot (\phi \, \vec{F}) &= \left(\vec{\imath} \frac{\partial}{\partial x} + \vec{\jmath} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right) \cdot (\phi \, \vec{F}) \\ &= \sum \vec{\imath} \cdot \frac{\partial}{\partial x} (\phi \, \vec{F}) \\ &= \sum \vec{\imath} \cdot \left(\phi \frac{\partial \vec{F}}{\partial x} + \vec{F} \frac{\partial \phi}{\partial x} \right) \end{split}$$

$$\begin{split} &= \phi \left(\sum \vec{\iota} \cdot \frac{\partial \vec{F}}{\partial x} + \vec{F} \frac{\partial \phi}{\partial x} \right) + \vec{F} \cdot \left(\sum \vec{\iota} \frac{\partial \phi}{\partial x} \right) \\ &\therefore \nabla \cdot (\phi \ \vec{F}) = \phi (\nabla \cdot \vec{F}) + \vec{F} \cdot \nabla \phi \end{split}$$

2) If φ is a scalar point fuction, \vec{F} is a vector point function, then $\nabla \times (\varphi \vec{F}) = \varphi(\nabla \times \vec{F}) + (\nabla \varphi) \times \vec{F}$ Proof:

$$\nabla \times (\phi \vec{F}) = \sum \vec{\iota} \times \frac{\partial}{\partial x} (\phi \vec{F})$$

$$= \sum \vec{\iota} \times \left[\phi \frac{\partial \vec{F}}{\partial x} + \vec{F} \frac{\partial \phi}{\partial x} \right]$$

$$= \sum \vec{\iota} \times \left(\frac{\partial \phi}{\partial x} \vec{F} + \phi \frac{\partial \vec{F}}{\partial x} \right)$$

$$= \left(\sum \vec{\iota} \frac{\partial \phi}{\partial x} \right) \times \vec{F} + \phi \left[\sum \vec{\iota} \times \frac{\partial \vec{F}}{\partial x} \right]$$

$$\therefore \nabla \times (\phi \vec{F}) = \nabla \phi \times \vec{F} + \phi (\nabla \times \vec{F})$$

3) If \vec{A} and \vec{B} are vector point functions, then $\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$ Proof:

$$\nabla \cdot (\vec{A} \times \vec{B}) = \sum \vec{\iota} \cdot \frac{\partial}{\partial x} (\vec{A} \times \vec{B})$$

$$= \sum \vec{\iota} \cdot \left(\vec{A} \times \frac{\partial \vec{B}}{\partial x} + \frac{\partial \vec{A}}{\partial x} \times \vec{B} \right)$$

$$= \sum \vec{\iota} \cdot \left(\vec{A} \times \frac{\partial \vec{B}}{\partial x} \right) + \sum \vec{\iota} \cdot \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B} \right)$$

$$= -\left(\sum \vec{\iota} \times \frac{\partial \vec{B}}{\partial x} \right) \cdot \vec{A} + \left(\sum \vec{\iota} \times \frac{\partial \vec{A}}{\partial x} \right) \cdot \vec{B}$$

$$= -\left(\nabla \times \vec{B} \right) \cdot \vec{A} + (\nabla \times \vec{A}) \cdot \vec{B}$$

$$\therefore \nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$$

$$[\because (\nabla \times \vec{A}) \cdot \vec{B} = \vec{B} \cdot (\nabla \times \vec{A})]$$

(4) If \vec{A} and \vec{B} are vector point functions, then

$$\nabla \times (\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{A} (\nabla \cdot \overrightarrow{B}) - \overrightarrow{B} (\nabla \cdot \overrightarrow{A}) + (\overrightarrow{B} \cdot \nabla) \overrightarrow{A} - (\overrightarrow{A} \cdot \nabla) \overrightarrow{B}$$

Proof:

$$\nabla \times (\vec{A} \times \vec{B}) = \sum \vec{i} \times \frac{\partial}{\partial x} (\vec{A} \times \vec{B})$$

$$= \sum \vec{i} \times \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B} + \vec{A} \times \frac{\partial \vec{B}}{\partial x} \right)$$

$$= \sum \vec{i} \times \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B} \right) + \sum \vec{i} \times \left(\vec{A} \times \frac{\partial \vec{B}}{\partial x} \right)$$

We know that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$

(6) If φ is a scalar point function, then $\nabla \times (\nabla \varphi) = \vec{0}$.

(or)

Prove that $curl(grad \varphi) = 0$.

Solution:

$$\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$$

$$\nabla \times \nabla \varphi = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial y} & \frac{\partial \varphi}{\partial z} \end{vmatrix}$$

$$= \sum \vec{i} \left[\frac{\partial^2 \varphi}{\partial y \partial z} - \frac{\partial^2 \varphi}{\partial z \partial y} \right]$$

$$= \sum \vec{i} \left(\vec{0} \right) = \vec{0}$$

Prove that $div(curl \vec{F}) = 0$.

Let
$$\vec{F} = F_1 \vec{\imath} + F_2 \vec{j} + F_3 \vec{k}$$

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

$$= \vec{\imath} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) - \vec{\jmath} \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z} \right) + \vec{k} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)$$

$$\nabla \cdot (\nabla \times \vec{F}) = \left(\vec{\imath} \frac{\partial}{\partial x} + \vec{\jmath} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right) \cdot$$

$$\left[\vec{\imath} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) - \vec{\jmath} \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z} \right) + \vec{k} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \right]$$

$$= \frac{\partial^2 F_3}{\partial x \partial y} - \frac{\partial^2 F_2}{\partial x \partial z} - \frac{\partial^2 F_3}{\partial y \partial x} + \frac{\partial^2 F_1}{\partial y \partial z} + \frac{\partial^2 F_2}{\partial z \partial x} - \frac{\partial^2 F_1}{\partial z \partial y}$$

$$= 0$$

$$(9) \nabla \cdot (\nabla \varphi) = (\nabla \cdot \nabla) \varphi = \nabla^2 \varphi$$

Proof:

$$\nabla \varphi = \vec{\iota} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$$

$$\therefore \nabla \cdot (\nabla \varphi) = \frac{\partial}{\partial x} \left(\frac{\partial \varphi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\partial \varphi}{\partial z} \right)$$

$$= \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}$$

$$\nabla \cdot \nabla = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\nabla \cdot (\nabla \varphi) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \varphi = \nabla^2 \varphi$$

Example: 2.26 Find (i) $\nabla \cdot \vec{r}$ (ii) $\nabla \times \vec{r}$

Let
$$\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$$

(i) $\nabla \cdot \vec{r} = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) \cdot \left(x \vec{i} + y \vec{j} + z \vec{k}\right)$

$$= \frac{\partial}{\partial x} (x) + \frac{\partial}{\partial y} (y) + \frac{\partial}{\partial z} (z)$$

$$= 1 + 1 + 1 = 3$$
(ii) $\nabla \times \vec{r} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z \end{vmatrix}$

$$= \vec{i}(0) + \vec{j}(0) + \vec{k}(0) = \vec{0}$$

Example: 2.28 If is a constant vector and is the position vector of any point, prove that

(i)
$$\nabla \cdot (\vec{a} \times \vec{r}) = 0$$
 (ii) $\nabla \times (\vec{a} \times \vec{r}) = 2\vec{a}$

Solution:

Let
$$\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$$

 $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$
 $\vec{a} \times \vec{r} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ x & y & z \end{vmatrix}$
 $= \vec{i}(a_2 z - a_3 y) - \vec{j}(a_1 z - a_3 x) + \vec{k}(a_1 y - a_2 x)$
(i) $\nabla \cdot (\vec{a} \times \vec{r}) = \frac{\partial}{\partial x}(a_2 z - a_3 y) + \frac{\partial}{\partial y}(-a_1 z + a_3 x) + \frac{\partial}{\partial z}(a_1 y - a_2 x)$
 $= 0 + 0 + 0 = 0$
(ii) $\nabla \times (\vec{a} \times \vec{r}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_2 z - a_3 y & -a_1 z + a_3 x & a_1 y - a_3 x \end{vmatrix}$
 $\stackrel{\cdot}{=} \vec{i}(a_1 + a_1) - \vec{j}(-a_2 - a_2) + \vec{k}(a_3 + a_3)$
 $= 2a_1 \vec{i} + 2a_2 \vec{j} + 2a_3 \vec{k}$
 $= 2(a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) = 2\vec{a}$

Example: 2.29 Prove that $curl(f(r)\vec{r}) = \vec{0}$

Let
$$f(r)\vec{r} = f(r)[x \vec{i} + y \vec{j} + z \vec{k}]$$

$$= xf(r)\vec{i} + yf(r)\vec{j} + zf(r)\vec{k}$$

$$\nabla \times (f(r)\vec{r}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xf(r) & yf(r) & zf(r) \end{vmatrix}$$

$$= \sum \vec{i} \left[zf'(r) \frac{\partial r}{\partial y} - yf'(r) \frac{\partial r}{\partial z} \right]$$

$$= \sum \vec{i} \left[zf'(r) \left(\frac{y}{r} \right) - yf'(r) \left(\frac{z}{r} \right) \right]$$

$$= \sum \vec{i} \left[\frac{zy}{r}f'(r) - \frac{zy}{r}f'(r) \right]$$

$$= \sum \vec{i} (0)$$

$$= 0 \vec{i} + 0 \vec{j} + 0 \vec{k} = \vec{0}$$

Example: 2.30 Prove that $curl[\varphi \nabla \varphi] = \vec{0}$

(or)

Prove that $\nabla \times [\varphi \nabla \varphi] = \vec{0}$

$$\varphi \nabla \varphi = \varphi \left[\vec{\iota} \frac{\partial \varphi}{\partial x} + \vec{J} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z} \right]$$

$$= \vec{\iota} \left(\varphi \frac{\partial \varphi}{\partial x} \right) + \vec{J} \left(\varphi \frac{\partial \varphi}{\partial y} \right) + \vec{k} \left(\varphi \frac{\partial \varphi}{\partial z} \right)$$

$$\nabla \times (\varphi \nabla \varphi) = \begin{vmatrix} \vec{\iota} & \vec{J} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \varphi \frac{\partial \varphi}{\partial x} & \varphi \frac{\partial \varphi}{\partial y} & \varphi \frac{\partial \varphi}{\partial z} \end{vmatrix}$$

$$= \sum \vec{\iota} \left[\frac{\partial}{\partial y} \left(\varphi \frac{\partial \varphi}{\partial z} \right) - \frac{\partial}{\partial z} \left(\varphi \frac{\partial \varphi}{\partial y} \right) \right]$$

$$= \sum \vec{\iota} \left[\varphi \frac{\partial^2 \varphi}{\partial y \partial z} + \frac{\partial \varphi}{\partial y} \cdot \frac{\partial \varphi}{\partial z} - \varphi \frac{\partial^2 \varphi}{\partial z \partial y} - \frac{\partial \varphi}{\partial y} \cdot \frac{\partial \varphi}{\partial z} \right]$$

$$= \sum \vec{\iota} (0)$$

$$= 0 \vec{\iota} + 0 \vec{I} + 0 \vec{k} = \vec{0}$$