

## SNS COLLEGE OF ENGINEERING, COIMBATORE-641 107 **DEPARTMENT OF MATHEMATICS**



## MA 8251 ENGINEERING MATHEMATICS-II **QUESTION BANK- Unit –III** Analytic functions Part-A

|     |                                                                                                                                                   | Unit | Reg<br>ulat | year                          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|-------------------------------|
| 1.  | The real part of an analytic function $f(z)$ is constant ,prove that $f(z)$ is a constant function.                                               | 3    | 13          | Apr/May 17                    |
| 2.  | Prove that the family of curves $u = c$ , $v = k$ cuts orthogonally for an analytic function $f(z) = u + iv$                                      | 3    | 13          | Dec/Jan 16                    |
| 3.  | Show that $f(x, y) = \log \sqrt{x^2 + y^2}$ is harmonic.                                                                                          | 3    | 8           | Apr /May<br>17                |
| 4.  | Is the function $f(z) =  z ^2$ analytic. Justify.                                                                                                 | 3    | 8           | Dec/Jan 16                    |
| 5.  | Is the function $f(z) = \overline{z}$ is analytic                                                                                                 | 3    | 13          | May/ June<br>14               |
| 6.  | Give an example of a function where u and v are harmonic but u+iv is not analytic.                                                                | 3    | 13          | May/June<br>16                |
| 7.  | Give an example of a complex – valued function which is differentiable at a point but not analytic at that point.                                 | 3    | 8           | Nov/Dec 14                    |
| 8.  | If $u(x, y) = 3x^2y + 2x^2 - y^3 - 2y^2$ , verify whether u is harmonic.                                                                          | 3    | 8           | Nov/Dec 14                    |
| 9.  | Examine whether y+e <sup>x</sup> cosy is harmonic.                                                                                                | 3    | 13          | Noc /Dec 17                   |
| 10. | Verify $f(z)=z^3$ is analytic or not.                                                                                                             | 3    | 13          | Nov/Dec 14                    |
| 11. | Find the value of m if $u=2x^2-my^2+3x$ is harmonic                                                                                               | 3    | 13          | Nov /Dec 16                   |
| 12. | Find the image of the line $x=1$ under the transformation $w=z^2$ .                                                                               | 3    | 13          | Noc /Dec 17                   |
| 13. | Find the image of the circle $ z  = 3$ transformation w=2z                                                                                        | 3    | 13          | Nov /Dec 16                   |
| 14. | Define conformal mapping                                                                                                                          | 3    | 8           | Dec/Jan 16                    |
| 15. | Find the critical points of the transformation $\omega = z^2 - \frac{1}{z^2}$ .                                                                   | 3    | 13          | Apr/May 17                    |
| 16. | Find the invariant points of a function $f(z) = \frac{z^3 + 7z}{7 - 6zi}$ .                                                                       | 3    | 13          | Dec/Jan 16                    |
| 17. | Find the critical points of the map $w^2=(z-\alpha)(z-\beta)$ .                                                                                   | 3    | 13          | Nov/Dec<br>14,May/Jun<br>e 16 |
| 18. | Find the invariant points of $f(z) = z^2$                                                                                                         | 3    | 13          | May/ June<br>14               |
| 19. | Classify the singularities of the function $f(z) = \frac{z - \sin z}{z}$                                                                          | 3    | 8           | Dec/Jan 16                    |
|     | PART-B                                                                                                                                            | -    |             |                               |
| 1   | If f(z) is a regular function of z, prove that $\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \log  f(z)  = 0$ | 3    | 13          | Apr/May 17                    |
| 2   | If f(z) is a regular function of z, then prove that $\nabla^2  f(z) ^2 = 4  f'(z) ^2$                                                             | 3    | 8           | Nov/Dec<br>14,Apr<br>/May 17, |
| 3   | If $f(z) = u + iv$ is an analytic function in $z = x + iy$ then prove                                                                             | 3    | 13          | May/June<br>16                |

|    | that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)  u ^2 = 2 f'(z) ^2$ .                                                                                                    |   |    |                 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-----------------|
| 4  | State and prove the necessary conditions for $f(z)$ to be analytic                                                                                                                                            | 3 | 8  | Dec/Jan 16      |
| 5  | Is $f(z) = z^n$ analytic function everywhere?                                                                                                                                                                 | 3 | 13 | Dec/Jan 16      |
| 6  | Prove that the real and imaginary parts of an analytic function are harmonic functions                                                                                                                        | 3 | 13 | May/ June<br>14 |
| 7  | Prove that $w = \frac{z}{z+a}$ where $a \neq 0$ is analytic where as $w = \frac{z}{z+a}$ is not analytic.                                                                                                     | 3 | 13 | May/June<br>16  |
| 8  | If f+u+iv is analytic on a domain D and $ f $ is a constant on D,Prove that f must be a constant on D.                                                                                                        | 3 | 8  | Nov/Dec 14      |
| 9  | Prove that $f(z)=z^n$ is analytic for all values of n and find its derivative.                                                                                                                                | 3 | 13 | Noc /Dec 17     |
| 10 | Find the analytic function $f(z) = u + iv$ , given that                                                                                                                                                       | 3 | 13 | Apr/May 17      |
| 11 | $2u + 3v = e^{x} (\cos x - \sin y).$<br>Find an analytic function $f(z) = u + iv$ , given that $2u + 3v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$                                                                 | 3 | 8  | Apr /May<br>17  |
| 12 | Construct the analytic function $f(z) = u + iv$ , given that $u = e^{x^2 - y^2} \cos 2xy$ .<br>Hence find v                                                                                                   | 3 | 8  | Dec/Jan 16      |
| 13 | If $u = x^2 - y^2$ , $v = \frac{y}{x^2 + y^2}$ , prove that $u$ and $v$ are harmonic functions but                                                                                                            | 3 | 13 | Dec/Jan 16      |
|    | f(z) = u + iv is not an analytic function.                                                                                                                                                                    |   |    |                 |
| 14 | Show that the function $u = e^{-2xy} \sin(x^2 - y^2)$ is a real part of an analytic                                                                                                                           |   | 13 | Dec/Jan 16      |
|    | function. Also find its conjugate harmonic function $v$ and express $f(z) = u + iv$ as function of z.                                                                                                         | 3 |    |                 |
| 15 | Show that $u = e^{-x} (x \cos y + y \sin y)$ is harmonic function. Hence find the analytic function $f(z) = u + iv$                                                                                           | 3 | 13 | May/ June<br>14 |
| 16 | Can $v = \tan^{-1}\left(\frac{y}{x}\right)$ be the imaginary part of an analytic function? If so construct an analytic function $f(z) = u + iv$ , taking <i>v</i> as imaginary part and hence find <i>u</i> . | 3 | 13 | May/June<br>16  |
| 17 | Find the analytic function f=u+iv given that<br>$u(x, y) = e^{2x} (x \sin 2y + y \cos 2y).$                                                                                                                   | 3 | 8  | Nov/Dec 14      |
| 18 | Prove that the function $u = \log \sqrt{(x^2 + y^2)}$ is harmonic and hence find its conjugate harmonic.                                                                                                      | 3 | 13 | Noc /Dec 17     |
| 19 | Prove that $u=x^2-y^2$ and $v = \frac{-y}{x^2 + y^2}$ are harmonic functions but not harmonic conjugates.                                                                                                     | 3 | 13 | Nov/Dec 14      |
| 20 | Given that $u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$ , find the analytic function f(z)=u+iv                                                                                                                    | 3 | 13 | Nov/Dec 14      |
| 21 | Find the analytic function $f(z) = u + iv$ , whose real part is<br>$u = e^{x} (x \cos y - y \sin y)$ Find also the conjugate harmonic of u.                                                                   | 3 | 13 | Nov /Dec 16     |

| 22       | Show that the transformation $\omega = \frac{1}{2}$ transforms in general ,circles and                     |          | 13 | Apr/May 17                     |
|----------|------------------------------------------------------------------------------------------------------------|----------|----|--------------------------------|
|          | Z.                                                                                                         | 3        |    |                                |
|          | straight lines into circles and straight lines.                                                            | <u> </u> |    |                                |
| 23       | Find the image of the infinite strip $\frac{1}{4} < y < \frac{1}{2}$ under the                             |          | 8  | Apr /May                       |
|          | Find the image of the minine strip $4$ y $\frac{1}{2}$ and the fine                                        | 3        |    | 17                             |
|          | transformation $w = \frac{1}{w}$                                                                           | 0        |    |                                |
| 9.4      | Z 1                                                                                                        |          |    |                                |
| 24       | Discuss the transformation $w = \frac{1}{v}$                                                               | 3        | 8  | Dec/Jan 16                     |
| 25       | Find the image of the lines $u = a$ and $v = b$ in <i>w</i> -plane into                                    |          | 13 | Dec/Jan 16                     |
|          | z -plane under the transformation.                                                                         | 3        |    |                                |
| 26       | Find the image of $ z+1  = 1$ under the map $w = \frac{1}{z}$                                              | 3        | 13 | May/ June                      |
|          | Z                                                                                                          | 0        | 10 | 14                             |
| 27       | Find the image of the circle $ z-2i =2$ under the transformation $w=\frac{1}{z}$ .                         | 3        | 13 | Noc /Dec 17                    |
| 28       | Show that the transformation $\omega = \frac{1}{2}$ transforms in general, circles and                     |          |    |                                |
|          | Z.                                                                                                         | 3        | 13 | Nov /Dec 16                    |
|          | straight lines into circles and straight lines.                                                            | 0        | 10 | 1101120010                     |
| 29       | If $f(z)=u(x,y)+iv(x,y)$ is an analytic function show that the curves                                      |          | 10 | N (D 10                        |
|          | $u(x,y)=c_1, v(x,y)=c_2$ cut orthogonally.                                                                 | 3        | 13 | Nov /Dec 16                    |
| 30       | Find the bilinear transformation which maps the point -1,0.1 of the z-                                     | 3        | 13 | Apr/May 17                     |
|          | plane into the points -1 ,-I ,1 of the $\omega$ -plane respectively                                        | 0        |    |                                |
| 31       | Find the bilinear transformation which maps the points $z = \infty$ ,                                      | 3        | 8  | Apr /May<br>17                 |
| 0.0      | $z = i, z = 0$ on to the points $w = 0, w = i, w = \infty$                                                 | _        |    | 11                             |
| 32       | Find the bilinear transformation that maps the points $0,1,\infty$ of the z –                              | 3        | 8  | Dec/Jan 16                     |
| 0.0      | plane in to the points -5, -1, 3 of the w – plane. Also find its fixed points                              |          | 10 | $D_{\rm rel}/L_{\rm rel} = 10$ |
| 33       | Find the bilinear transformation which maps $1,-i,1$ in $z$ -plane into                                    | 3        | 13 | Dec/Jan 16                     |
| 2.4      | $0,1,\infty$ of the <i>w</i> -plane respectively.                                                          |          |    |                                |
| 34       | Find the bilinear transformation that maps 1, i and -1 of the z-plane on to 0, 1, $\infty$ of the w-plane. | 3        | 13 | May/ June<br>14                |
| 35       | Find the bilinear transformation that transforms the points $z = 1, i, -1$ of                              |          |    |                                |
| 00       | the z-plane into the points $w = 2, i, -2$ of the w-plane.                                                 | 3        | 13 | May/June<br>16                 |
| 36       | Find the bilinear transformation which maps the points                                                     |          |    | 10                             |
| 50       | $\infty, 2, -1$ to $1, \infty$ and 0 respectively.                                                         | 3        | 8  | Nov/Dec 14                     |
| 37       | Find the bilinear transformation which maps the points z=1,i,-1 in to the                                  |          | 10 | N /D                           |
|          | points w=i,0,-i. Hence find the image of  z <1.                                                            | 3        | 13 | Noc /Dec 17                    |
| 38       | Find the bilinear transformation which maps the point z= 1,i1 onto the                                     | 3        | 13 | Nov/Dec 14                     |
|          | points w= i ,0 ,-i.                                                                                        | 0        | 10 |                                |
| 39       | Find the bilinear transformation which maps the point $z=0,11$ of the                                      |          |    |                                |
|          | onto the points w= -1 ,0 , $\infty$ Find also the invariant points of the transformation                   | 3        | 13 | Nov /Dec 16                    |
| <u> </u> | transformation.                                                                                            |          |    |                                |

.....