## DEPARTMENT OF MATHEMATICS

## MA 8251 ENGINEERING MATHEMATICS-II QUESTION BANK- Unit -III <br> Analytic functions <br> Part-A

|  |  | Unit | Reg ulat | year |
| :---: | :---: | :---: | :---: | :---: |
| 1. | The real part of an analytic function $f(z)$ is constant , prove that $f(z)$ is a constant function. | 3 | 13 | Apr/May 17 |
| 2. | Prove that the family of curves $u=c, v=k$ cuts orthogonally for an analytic function $f(z)=u+i v$ | 3 | 13 | Dec/Jan 16 |
| 3. | Show that $f(x, y)=\log \sqrt{x^{2}+y^{2}}$ is harmonic. | 3 | 8 | $\begin{aligned} & \text { Apr /May } \\ & 17 \\ & \hline \end{aligned}$ |
| 4. | Is the function $f(z)=\|z\|^{2}$ analytic . Justify. | 3 | 8 | Dec/Jan 16 |
| 5. | Is the function $\mathrm{f}(\mathrm{z})=\bar{z}$ is analytic | 3 | 13 | May/ June 14 |
| 6. | Give an example of a function where $u$ and $v$ are harmonic but $u+i v$ is not analytic. | 3 | 13 | May/June $16$ |
| 7. | Give an example of a complex - valued function which is differentiable at a point but not analytic at that point. | 3 | 8 | Nov/Dec 14 |
| 8. | If $u(x, y)=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$, verify whether u is harmonic. | 3 | 8 | Nov/Dec 14 |
| 9. | Examine whether $\mathrm{y}+\mathrm{e}^{\mathrm{x}}$ cosy is harmonic. | 3 | 13 | Noc /Dec 17 |
| 10. | Verify $f(\mathrm{z})=\mathrm{z}^{3}$ is analytic or not. | 3 | 13 | Nov/Dec 14 |
| 11. | Find the value of $m$ if $u=2 x^{2}-\mathrm{my}^{2}+3 \mathrm{x}$ is harmonic | 3 | 13 | Nov /Dec 16 |
| 12. | Find the image of the line $\mathrm{x}=1$ under the transformation $\mathrm{w}=\mathrm{z}^{2}$. | 3 | 13 | Noc/Dec 17 |
| 13. | Find the image of the circle $\|z\|=3$ transformation $\mathrm{w}=2 \mathrm{z}$ | 3 | 13 | Nov /Dec 16 |
| 14. | Define conformal mapping | 3 | 8 | Dec/Jan 16 |
| 15. | Find the critical points of the transformation $\omega=z^{2}-\frac{1}{z^{2}}$. | 3 | 13 | Apr/May 17 |
| 16. | Find the invariant points of a function $f(z)=\frac{z^{3}+7 z}{7-6 z i}$. | 3 | 13 | Dec/Jan 16 |
| 17. | Find the critical points of the map $\mathrm{w}^{2}=(\mathrm{z}-\alpha)(\mathrm{z}-\mathrm{B})$. | 3 | 13 | Nov/Dec 14,May/Jun e 16 |
| 18. | Find the invariant points of $f(z)=z^{2}$ | 3 | 13 | May/ June 14 |
| 19. | Classify the singularities of the function $f(z)=\frac{z-\sin z}{z}$ | 3 | 8 | Dec/Jan 16 |
|  | PART-B |  |  |  |
| 1 | If $f(z)$ is a regular function of $z$,prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \|f(z)\|=0$ | 3 | 13 | Apr/May 17 |
| 2 | If $\mathrm{f}(\mathrm{z})$ is a regular function of z , then prove that $\nabla^{2}\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$ | 3 | 8 | $\begin{aligned} & \text { Nov/Dec } \\ & \text { 14,Apr } \\ & \text { /May 17, } \end{aligned}$ |
| 3 | If $f(z)=u+i v$ is an analytic function in $z=x+i y$ then prove | 3 | 13 | May/June $16$ |


|  | $\operatorname{that}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|u\|^{2}=2\left\|f^{\prime}(z)\right\|^{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 4 | State and prove the necessary conditions for $\mathrm{f}(\mathrm{z})$ to be analytic | 3 | 8 | Dec/Jan 16 |
| 5 | Is $f(z)=z^{n}$ analytic function everywhere? | 3 | 13 | Dec/Jan 16 |
| 6 | Prove that the real and imaginary parts of an analytic function are harmonic functions | 3 | 13 | $\begin{aligned} & \text { May/ June } \\ & 14 \end{aligned}$ |
| 7 | Prove that $w=\frac{z}{z+a}$ where $\mathbf{a} \neq 0$ is analytic where as $w=\frac{\bar{z}}{\bar{z}+a}$ is not analytic. | 3 | 13 | May/June $16$ |
| 8 | If $\mathrm{f}+\mathrm{u}+\mathrm{iv}$ is analytic on a domain D and $\|f\|$ is a constant on D , Prove that f must be a constant on D. | 3 | 8 | Nov/Dec 14 |
| 9 | Prove that $\mathrm{f}(\mathrm{z})=\mathrm{z}^{\mathrm{n}}$ is analytic for all values of n and find its derivative. | 3 | 13 | Noc /Dec 17 |
| 10 | Find the analytic function $f(z)=u+i v$, given that $2 u+3 v=e^{x}(\cos x-\sin y)$. | 3 | 13 | Apr/May 17 |
| 11 | Find an analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$, given that $2 u+3 v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$ | 3 | 8 | $\begin{aligned} & \text { Apr /May } \\ & 17 \end{aligned}$ |
| 12 | Construct the analytic function $f(z)=u+i v$, given that $u=e^{x^{2}-y^{2}} \cos 2 x y$. Hence find $v$ | 3 | 8 | Dec/Jan 16 |
| 13 | If $u=x^{2}-y^{2}, v=\frac{y}{x^{2}+y^{2}}$, prove that $u$ and $v$ are harmonic functions but $f(z)=u+i v$ is not an analytic function. | 3 | 13 | Dec/Jan 16 |
| 14 | Show that the function $u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is a real part of an analytic function. Also find its conjugate harmonic function $v$ and express $f(z)=u+i v$ as function of $z$. | 3 | 13 | Dec/Jan 16 |
| 15 | Show that $\mathrm{u}=\mathrm{e}^{-\mathrm{x}}(\mathrm{x} \cos \mathrm{y}+\mathrm{ysin} \mathrm{y})$ is harmonic function. Hence find the analytic function $f(z)=u+i v$ | 3 | 13 | May/ June $14$ |
| 16 | Can $v=\tan ^{-1}\left(\frac{y}{x}\right)$ be the imaginary part of an analytic function? If so construct an analytic function $f(z)=u+i v$, taking $v$ as imaginary part and hence find $u$. | 3 | 13 | May/June $16$ |
| 17 | Find the analytic function $\mathrm{f}=\mathrm{u}+\mathrm{iv}$ given that $u(x, y)=e^{2 x}(x \sin 2 y+y \cos 2 y)$. | 3 | 8 | Nov/Dec 14 |
| 18 | Prove that the function $\mathrm{u}=\log \sqrt{\left(x^{2}+y^{2}\right.}$ is harmonic and hence find its conjugate harmonic. | 3 | 13 | Noc /Dec 17 |
| 19 | Prove that $\mathrm{u}=\mathrm{x}^{2}-\mathrm{y}^{2}$ and $v=\frac{-y}{x^{2}+y^{2}}$ are harmonic functions but not harmonic conjugates. | 3 | 13 | Nov/Dec 14 |
| 20 | Given that $u=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$, find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ | 3 | 13 | Nov/Dec 14 |
| 21 | Find the analytic function $f(z)=u+i v$, whose real part is $u=e^{x}(x \cos y-y \sin y)$ Find also the conjugate harmonic of $u$. | 3 | 13 | Nov/Dec 16 |


| 22 | Show that the transformation $\omega=\frac{1}{z}$ transforms in general ,circles and straight lines into circles and straight lines. | 3 | 13 | Apr/May 17 |
| :---: | :---: | :---: | :---: | :---: |
| 23 | Find the image of the infinite strip $\frac{1}{4}<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$ | 3 | 8 | $\begin{aligned} & \text { Apr /May } \\ & 17 \end{aligned}$ |
| 24 | Discuss the transformation $w=\frac{1}{v}$ | 3 | 8 | Dec/Jan 16 |
| 25 | Find the image of the lines $u=a$ and $v=b$ in $w$-plane into $z$-plane under the transformation. | 3 | 13 | Dec/Jan 16 |
| 26 | Find the image of $\|z+1\|=1$ under the map $w=\frac{1}{z}$ | 3 | 13 | $\begin{aligned} & \text { May/ June } \\ & 14 \end{aligned}$ |
| 27 | Find the image of the circle $\|\mathrm{z}-2 \mathrm{i}\|=2$ under the transformation $\mathrm{w}=\frac{1}{z}$. | 3 | 13 | Noc /Dec 17 |
| 28 | Show that the transformation $\omega=\frac{1}{z}$ transforms in general, circles and straight lines into circles and straight lines. | 3 | 13 | Nov/Dec 16 |
| 29 | If $f(z)=u(x, y)+i v(x, y)$ is an analytic function show that the curves $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{1}, \mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{2}$ cut orthogonally. | 3 | 13 | Nov/Dec 16 |
| 30 | Find the bilinear transformation which maps the point $-1,0.1$ of the z plane into the points $-1,-\mathrm{I}, 1$ of the $\omega$-plane respectively | 3 | 13 | Apr/May 17 |
| 31 | Find the bilinear transformation which maps the points $z=\infty$, $z=i, z=0$ on to the points $w=0, w=i, w=\infty$ | 3 | 8 | $\begin{aligned} & \text { Apr /May } \\ & 17 \end{aligned}$ |
| 32 | Find the bilinear transformation that maps the points $0,1, \infty$ of the $z-$ plane in to the points $-5,-1,3$ of the $\mathrm{w}-$ plane. Also find its fixed points | 3 | 8 | Dec/Jan 16 |
| 33 | Find the bilinear transformation which maps $1,-i, 1$ in $z$-plane into $0,1, \infty$ of the $w$-plane respectively. | 3 | 13 | Dec/Jan 16 |
| 34 | Find the bilinear transformation that maps $1, \mathrm{i}$ and -1 of the z -plane on to $0,1, \infty$ of the w-plane. | 3 | 13 | $\begin{aligned} & \text { May/ June } \\ & 14 \end{aligned}$ |
| 35 | Find the bilinear transformation that transforms the points $z=1, i,-1$ of the z -plane into the points $w=2, i,-2$ of the $w$-plane. | 3 | 13 | May/June $16$ |
| 36 | Find the bilinear transformation which maps the points $\infty, 2,-1$ to $1, \infty$ and 0 respectively. | 3 | 8 | Nov/Dec 14 |
| 37 | Find the bilinear transformation which maps the points $\mathrm{z}=1, \mathrm{i},-1$ in to the points $w=i, 0,-$ i. Hence find the image of $\|\mathrm{z}\|<1$. | 3 | 13 | Noc /Dec 17 |
| 38 | Find the bilinear transformation which maps the point $\mathrm{z}=1, \mathrm{i} .-1$ onto the points w= i ,0,-i. | 3 | 13 | Nov/Dec 14 |
| 39 | Find the bilinear transformation which maps the point $\mathrm{z}=0,1 .-1$ of the onto the points $w=-1,0, \infty$ Find also the invariant points of the transformation. | 3 | 13 | Nov/Dec 16 |

