MA 8251 ENGINEERING MATHEMATICS-II QUESTION BANK- Unit -II
 Vector calculus
 Part-A

		Unit	Reg	year
1.	Find the unit normal vector to the surface $x^{3}+y^{2}-z$ at (1,1,2).	2	13	Apr/May 17
2.	Find the unit normal vector of the surface $x^{2}+y^{2}-z=1$ at (1, 1,1).	2	8	$\begin{gathered} \text { Apr /May } \\ 17 \end{gathered}$
3.	Find the unit vector normal to the surface $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}$ at $(1,-2,5)$	2	13	$\begin{gathered} \hline \text { May/ June } \\ 14 \end{gathered}$
4.	Find the unit normal vector to $\mathrm{xy}=\mathrm{z}^{2}$ at ($1,1,-1$).	2	13	Nov /Dec 16
5.	Using Greens theorem in the plane,find the area of the circle $x^{2}+y^{2}=a^{2}$	2	13	Apr/May 17
6.	Using Greens theorem evaluate $\int_{C}(x d y-y d x)$ where C is the circle $x^{2}+y^{2}=1$ in the xy plane	2	13	Nov/Dec 16
7.	Prove that $\operatorname{Grad}(1 / r)=\frac{-\vec{r}}{r^{3}}$.	2	13	Dec/Jan 16
8.	Prove that $\operatorname{Curl}(\operatorname{grad} \varphi)=0$	2	13	May/ June 14
9.	Evaluate $\nabla^{2} \log r$.	2	13	$\begin{gathered} \text { May/June } \\ 16 \end{gathered}$
10	Find $\nabla\left(\nabla \cdot\left(\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-x z\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}\right)\right)$ at the point $(1,-1,2)$.	2	8	Nov/Dec 14
11	Find Curl \vec{F} if $\vec{F}=x y \vec{i}+y z \vec{j}+z x \vec{k}$	2	13	Nov/Dec 14
12	Evaluate $\int_{c}(y z \dot{i}+x z \vec{j}+x y \vec{k}) \cdot \overrightarrow{d r}$ where C is the boundary of the surface S .	2	13	Dec/Jan 16
13	Evaluate the integral $\int_{\mathrm{c}} \vec{F} . \mathrm{d} \vec{r}$ if $\vec{F}=\mathrm{xy}^{2} \overrightarrow{\underline{l}}+\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \vec{j}$ and C is the curve given by $y=x^{2}-4$ from $(2,0)$ to $(4,12)$.	2	13	Noc/Dec 17
14	What is the greatest rate of $\phi=x y z^{2}$ at (1,0,3)	2	8	$\begin{gathered} \text { Apr /May } \\ 17 \end{gathered}$
15	The temperature of points in space is given by $T(x, y, z)=x^{2}+y^{2}-z$. A mosquito located ($1,1,2$)desires to fly in such a direction that it will get warm as soon as possible. In what direction should it move?	2	8	Dec/Jan 16
16	If $\vec{F}=(\mathrm{x}+3 \mathrm{y}) \vec{i}+(\mathrm{y}-2 \mathrm{z}) \vec{j}+(\mathrm{x}+2 \mathrm{kz}) \vec{k}$ has divergence zero, find the unknown value of k.	2	13	Nov/Dec 17
17	State Green's theorem in a plane	2	$\begin{gathered} 8,1 \\ 3 \end{gathered}$	Noc /Dec 14,Dec/Jan 16
18	State Stokes' theorem	2	$\begin{gathered} 8,1 \\ 3 \end{gathered}$	Noc /Dec 14,May/Jun1 6
Part-B				
1	Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and	2	13	$\begin{gathered} \hline \text { Nov/Dec } \\ \text { 16,Apr/May } \end{gathered}$

	$z^{2}=x^{2}+y^{2}-3$ at the point (2,-1,2).			17
2	Find the angle between the normals to the surfaces $x^{2}=y z$ at the points($1,1,1$) and $(2,4,1)$.	2	13	Nov/Dec 14
3	Prove that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=\mathrm{n}(\mathrm{n}+1) r^{n-2}$ Prove that $\operatorname{curl}(\operatorname{grad} \phi)=0$		8	$\begin{gathered} \hline \text { Apr /May } \\ 17 \end{gathered}$
4	Prove $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$ and deduce that $\frac{1}{r}$ satisfies Laplace equation	2	8	$\begin{gathered} \text { DEC /JAN } \\ 16 \end{gathered}$
5	Find the value of n such that the vector $r^{n \vec{r}}$ is both solenoidal and irrotational.	2	13	May/ June 14
6	Prove that CurlCurl $\vec{F}=\operatorname{grad} \operatorname{div} \vec{F}-\nabla^{2} \vec{F}$.	2	13	May/June 16
7	Prove that $\operatorname{div}(\phi \vec{F})=\phi d i v \vec{F}+\nabla \phi \cdot \vec{F}$. Also, determine the value of n for which $r^{n} \vec{R}$ is solenoidal, where $\vec{R}=x \vec{i}+y \vec{j}+z \vec{K}$ and $r=\|\vec{R}\|$.	2	8	Nov/Dec 14
8	A fluid motion is given by $\vec{V}=(y+z) \dot{i}+(z+x) \vec{j}+(x+y) \vec{k}$. Is this motion is irrotational and is possible for an incompressible fluid?	2	13	Dec/Jan 16
9	If $\nabla \varphi=2 x y z^{3}{ }^{3}+x^{2} z^{3} \vec{j}+3 x^{2} y z^{2} \vec{k}$.find $\varphi(x, y, z)$ given that $\varphi(1,-2,2)=4$	2	13	$\begin{gathered} \hline \text { May/June } \\ 16 \end{gathered}$
10	Find the constants a,b,c so that $\vec{F}=(x+2 y+a z) \vec{i}+(b x-3 y-z) \vec{j}-(4 x+c y+2 z) \vec{k}$ is irrotational.For those values of a,b,c.Find its scalar potential.	2	13	Apr/May 17
11	Show that $\vec{F}=2 x y z^{3} \bar{i}+x^{2} z^{3} \vec{j}+3 x^{2} y z^{2} \vec{k}$ is irrotational. Find the scalar potential ϕ and $\mathrm{F}=\operatorname{grad} \phi$	2	8	$\begin{gathered} \hline \text { Apr /May } \\ 17 \end{gathered}$
12	Show that $\vec{F}=\left(y^{2}+2 x z^{2}\right) \dot{i}+(2 x y-z) \vec{j}+\left(2 x^{2} z-y+2 z\right) \vec{k}$ is irrotational and hence find its scalar potential	2	8	$\begin{gathered} \hline \text { Nov/Dec } \\ \text { 14,DEC } \\ \text { /JAN } 16 \end{gathered}$
13	Prove that $\vec{F}=\left(\mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{x}\right) \vec{i}-(2 \mathrm{xy}+\mathrm{y}) \vec{j}$ is a conservative field and find the scalar potential of \vec{F}.	2	13	Noc /Dec 17
14	Prove that $\vec{F}=\left(x^{2}-y^{2}+x\right) \vec{i}-(2 x y+y) \vec{j}$ is irrotational and hence find its scalar potential.	2	13	Nov /Dec 14
15	Prove that $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{i}+(2 y \sin x-4) \vec{j}+3 x z^{2} \vec{k}$ is irrotational and find its scalar potential.	2	13	Nov /Dec 16
16	Verify Green's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \dot{i}-2 x y \vec{j}$ taken around the rectangle bounded by the lines $\mathrm{x}= \pm \mathrm{a}, \mathrm{y}=0$ and $\mathrm{y}=\mathrm{b}$.	2	13	Dec/Jan 16
17	Using Green's theorem in a plane $\int_{C}\left[x^{2}(1+y) d x+\left(x^{3}+y^{3}\right) d y\right]$ where C is the square formed by $x= \pm 1$ and $y= \pm 1$.	2	13	May/June 16
18	Appply Green's theorem to evaluate $\int_{c}\left(x y-x^{2}\right) d x+x^{2} y$ dy along the closed curve C formed by $y=0, x=1$ and $y=x$.	2	13	Noc /Dec 17
19	Using Greens theorem, evaluate $\int_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where C is the boundary of the triangle formed by the lines $x=0, y=0, x+y=1$ in the $x y$ plane.	2	13	Nov /Dec 14
20	Verify Stoke's theorem for $\vec{F}=\left(x^{2}-y^{2}\right) \vec{i}+2 x y \vec{j}$,where S is the rectangle	2	13	May/ June

	in the xy -plane formed by the lines $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0$ and $\mathrm{y}=\mathrm{b}$.			$\begin{gathered} \text { 14,Apr/May } \\ 17 \end{gathered}$
21	Using Stoke's theorem to evaluate $\int_{c} \vec{F} d \vec{r}$ where $\vec{F}=(\sin x-y) \dot{i}-\cos x \vec{j}$ and C is the boundary of the triangle whose vertices are $(0,0),\left(\frac{\pi}{2}, 0\right)$ and $\left(\frac{\pi}{2}, 1\right)$	2	8	$\begin{gathered} \text { DEC /JAN } \\ 16 \end{gathered}$
22	Verify Stoke's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}+2 x y \vec{j}$ where S is the rectangle in the xy -plane formed by the lines $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$.	2	8	Nov/Dec 14
23	Verify Divergence theorem for $\vec{F}=4 x z \vec{i}-y^{2} \vec{j}+y z \vec{k}$ taken over the cube bounded by the planes $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$.	2	13	$\begin{gathered} \text { Nov/Dec } \\ \text { 16,Apr/May } \\ 17 \end{gathered}$
24	Verify Gauss divergence theorem for $\vec{F}=y \bar{i}+x \vec{j}+z^{2} \vec{k}$ for the cylindrical region given by $x^{2}+y^{2}=a^{2}, \mathrm{z}=0, \mathrm{z}=\mathrm{h}$.	2	8	$\begin{gathered} \text { Apr /May } \\ 17 \end{gathered}$
25	Verify Gauss divergence theorem for $\vec{F}=x^{2} \dot{i}+y^{2} \vec{j}+z^{2} \vec{k}$, wher S is the surface of the cuboid formed by the planes $x=0, x=a, y=0, y=b, z=0, z=c$	2	8	Nov/Dec 14,DEC /JAN 16
26	Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \dot{i}+\left(y^{2}-x z\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$. and S is the surface of the rectangular parallelepiped bounded by $x=0, x=a, y=0, y=b, z=0$ and $z=c$.	2	13	Dec/Jan 16
27	Verify Gauss divergence Theorem for $\vec{F}=x^{2 \vec{\imath}}+y^{2 \vec{j}}+z^{2} \vec{k}$ taken over the cube bounded by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$	2	13	May/ June 14
28	Evaluate $\iint_{\mathrm{s}} \vec{f} \cdot \hat{n} \mathrm{dS}$ where $\vec{F}=\mathrm{z} \vec{l}+\mathrm{x} \vec{\jmath}-3 \mathrm{y}^{2} \mathrm{z} \vec{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.	2	13	Noc /Dec 17
29	Evaluate $\iint \vec{F} . \hat{n} \mathrm{dS}$ using Gauss divergence theorem for $\vec{F}=\mathrm{x}^{2} \vec{\imath}+\mathrm{y}^{2} \vec{\jmath}+\mathrm{z}^{2} \vec{k}$ taken over the cube bounded by the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$, $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$.	2	13	Noc /Dec 17
30	Find the work done in moving particle in the force field $\vec{F}=3 x^{2} \vec{i}+(2 x z-y) \vec{j}+z \vec{k}$ along the curve defined by $x^{2}=4 y$, $3 x^{2}=8 z$ from $\mathrm{x}=0$ to $\mathrm{x}=2$.	2	8	$\begin{gathered} \text { Apr /May } \\ 17 \end{gathered}$
31	Find the values of constants a,b,c so that the maximum value of the directional derivative of $\varphi=a x y^{2}+b y z+c z^{2} x^{3}$ at $(1,2,-1)$ has a magnitude 64 in the direction parallel to z -axis.	2	13	Dec/Jan 16
32	Find the directional derivative of $\phi=4 x z^{2}+x^{2} y z$ at $(1,-2,1)$ in the direction of $2 \vec{i}+3 \vec{j}+4 \vec{k}$	2	13	Nov /Dec 16
33	Find ' a ' and ' b ' so that the surfaces $a x^{3}-b y^{2} z=(a+3) x^{2}$ and $4 x^{2} y-z^{3}=11$ cut orthogonally at (2, $-1,-3$)	2	13	$\begin{gathered} \text { May/June } \\ 16 \end{gathered}$
34	Find the values of constants a,b,c so that the maximum value of the directional derivative of $\varphi=a x y^{2}+b y z+c z^{2} x^{3}$ at $(1,2,-1)$ has a magnitude 64 in the direction parallel to z -axis.	2	13	Dec/Jan 16

