Unit-4

DYNAMICS OF PARTICLES

Particle Kinematics

Dynamics $=$ Kinematics + Kinetics

Kinematics: The description of motion (position, velocity, acceleration, time) without regard to forces.

Kinetics: Determining the forces (based on $\mathrm{F}=\mathrm{ma}$) associated with motion.

Distance and Displacement

Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion.

Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.

To test your understanding of this distinction, consider the motion depicted in the diagram below. A person walks 4 meters East, 2 meters South, 4 meters West, and finally 2 meters North.

He covered 12 meters of ground (distance $=12 \mathrm{~m}$)

There is no displacement for his motion (displacement $=0 \mathrm{~m}$)

Use the diagram to determine the resulting displacement and the distance traveled by the skier during these three minutes.

The skier covers a distance of
$(180 m+140 m+100 m)=420 m$
has a displacement of $\mathbf{1 4 0} \mathbf{~ m}$, rightward.

Speed and Velocity

- Speed is a scalar quantity that refers to "how fast an object is moving."
- Speed can be thought of as the rate at which an object covers distance.
- A fast-moving object has a high speed and covers a relatively large distance in a short amount of time.
- Contrast this to a slow-moving object that has a low speed; it covers a relatively small amount of distance in the same amount of time.
- An object with no movement at all has a zero speed.
- Velocity is a vector quantity that refers to "the rate at which an object changes its position."
- Imagine a person moving rapidly - one step forward and one step back - always returning to the original starting position.
- While this might result in a frenzy of activity, it would result in a zero velocity.
- Because the person always returns to the original position, the motion would never result in a change in position.
- Since velocity is defined as the rate at which the position changes, this motion results in zero velocity.

The average speed during the course of a motion is often computed using the following formula:

$$
\text { Average Speed }=\frac{\text { Distance Traveled }}{\text { Time of Travel }}
$$

In contrast, the average velocity is often computed using this formula

$$
\text { Average Velocity }=\frac{\Delta \text { position }}{\text { time }}=\frac{\text { displacement }}{\text { time }}
$$

Time (s)	Position (m)
0	0
1	6
2	12
3	18
4	24

An object moving with a changingspeed

Time (s)	Position (m)
0	0
1	1
2	4
3	9
4	16

$$
\mathrm{v}=\mathrm{d} \mathrm{~s} / \mathrm{dt}
$$

Acceleration

Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity. $a=d v / d t$

1. Which car or cars (red, green, and/or blue) are undergoing an acceleration?
2. Which car (red, green, or blue) experiences the greatest acceleration?

An object moring with a constant speed of $6 \mathrm{~m} / \mathrm{s}$

Time (s)	Position (m)
0	0
1	6
2	12
3	18
4	24

An object moring with a changingspeed

Time (s)	Position (m)
0	0
1	1
2	4
3	9
4	16

Kinematic Variables

Particle kinematics involves describing a particle's position, velocity and acceleration versus time.

Kinematic Variables		
Description	Vector	Scalar
Position	$\overrightarrow{\mathbf{r}}$	\mathbf{s}
Velocity	$\overrightarrow{\mathbf{v}}$	\mathbf{v}
Acceleration	$\overrightarrow{\mathbf{a}}$	\mathbf{a}
Time	\mathbf{t}	\mathbf{t}

MOTION UNDER UNIFORM ACCELERATION

Consider＊linear motion of a particle starting from O and moving along $O X$ with a uniform acceleration as shown in Fig．17．1．Let P be its position after t seconds．

Let
$u=$ Initial velocity，
$v=$ Final velocity，
$t=$ Time（in seconds）taken by the particle to change its velocity from u to v ．
$a=$ Uniform positive acceleration，and
$s=$ Distance travelled in t seconds．
Since in t seconds，the velocity of the particle has increased steadily from (u) to (v) at the rate of a ，therefore total increase in velocity
$=a t$
$\therefore \quad v=u+a t$
and average velocity
$=\left(\frac{u+v}{2}\right)$

We know that distance travelled by the particle,

$$
\begin{align*}
s & =\text { Average velocity } \times \text { Time } \\
& =\left(\frac{u+v}{2}\right) \times t \tag{ii}
\end{align*}
$$

Substituting the value of v from equation (i),

$$
\begin{equation*}
s=\left(\frac{u+u+a t}{2}\right) \times t=u t+\frac{1}{2} a t^{2} \tag{iii}
\end{equation*}
$$

From equation (i), (i.e. $v=u+a t$) we find that

$$
t=\frac{v-u}{a}
$$

Now substituting this vlaue of t in equation (ii),

$$
s=\left(\frac{u+v}{2}\right) \times\left(\frac{v-u}{a}\right)=\frac{v^{2}-u^{2}}{2 a}
$$

or

$$
\begin{aligned}
2 a s & =v^{2}-u^{2} \\
v^{2} & =u^{2}+2 a s
\end{aligned}
$$

Newton's Law of Motion

Types of Motion

The motion can also be termed as "Plane Motion". It is classified into two types. They are

1. Translation Rectilinear
2. Rotation

Tips for Solving Problems

1. If a body starts from rest, its initial velocity is zero, i.e $u=0$
2. If a body comes to rest, its final velocity is zero, i.e $\mathrm{V}=0$
3. If a body is projected vertically upwards, the final velocity at the highest point is zero, i.e $\mathrm{V}=0$
4. If a body starts moving vertically downwards, its initial velocity is zero, i.e $u=0$
5. Equation of motion of body under uniform acceleration due to gravity can be expressed as a. For downward motion

$$
\begin{array}{cl}
\mathrm{a}=+\mathrm{g} & \mathrm{~h}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2} \\
\mathrm{v}=\mathrm{u}+\mathrm{gt} & \mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{gh}
\end{array}
$$

The position of a particle which move along a straight line is defined by $\mathrm{x}=\mathrm{t}^{3}-6 \mathrm{t}^{2}-15 \mathrm{t}+40$ where x is in m, t is in sec. Determine the following

- The time at which the velocity will be zero
- The position and distance travelled by the particle at that time
- Acceleration of the particle at that time
- The distance travelled by the particle $\mathrm{t}=4 \mathrm{sec}$ and $\mathrm{t}=6 \mathrm{sec}$

Solution:

Displacement $\mathrm{x}=\mathrm{t}^{3}-6 \mathrm{t}^{2}-15 \mathrm{t}+40$
We know that,
Velocity, $\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=3 \mathrm{t}^{2}-12 \mathrm{t}-15 \rightarrow(1)$
Also we know that
Acceleration, $\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=6 \mathrm{t}-12 \rightarrow$ (2)
a) Time at which velocity will be zero

By equating eqn (1) to zero

$$
\begin{gathered}
3 \mathrm{t}^{2}-12 \mathrm{t}-15=0 \\
\mathrm{t}^{2}-4 \mathrm{t}-5=0 \\
\mathrm{t}=+5 \sec (\mathrm{t}=-1 \text { sec is not practically possible })
\end{gathered}
$$

b) Position and distance travelled when $\mathrm{v}=0$ when $\mathrm{t}=5$, $\mathrm{v}=0$ (zero velocity) Position of particle at $t=5 \mathrm{sec}$

$$
\begin{gathered}
x_{5}=5^{3}-6(5)^{2}-15(5)+40 \\
=125-150-75+40=-60 \mathrm{~m}
\end{gathered}
$$

Initial position of particle at $\mathrm{t}=0 \mathrm{sec}$

$$
\begin{gathered}
x_{0}=0^{3}+6(0)^{2}-15(0)+40 \\
x_{0}=40 \mathrm{~m}
\end{gathered}
$$

Distance travelled $=x_{5}-x_{0}=-60-40=-100 \mathrm{~m}$
i.e 100 m in the negative direction
c) Acceleration when $v=0$

$$
\begin{gathered}
\mathrm{v}=0 \text { at } \mathrm{t}=5 \mathrm{sec} \\
\mathrm{a}=6 \mathrm{t}-12
\end{gathered}
$$

$a=6(5)-12=18 \mathrm{~m} / \mathrm{sec}^{2}$
d) Distance travelled by the particle when
$\mathrm{t}=4 \mathrm{sec}$ and $\mathrm{t}=6 \mathrm{sec}$
Position at $t=4 \sec x_{4}=4^{3}-6(4)^{2}-15(4)+40=-52 m$
Position at $\mathrm{t}=6 \mathrm{sec} x_{6}=6^{3}-6(6)^{2}-15(6)+40=-50 m$
Position at $\mathrm{t}=5 \mathrm{sec} x_{5}=-60 \mathrm{~m}$
Distance trance travelled when $\mathrm{t}=5 \mathrm{sec}$ to $\mathrm{t}=6 \mathrm{sec}$

$$
\begin{gathered}
=x_{6}-x_{5} \\
=-50-(-60) \\
=10 \mathrm{~m} \text { (Positive Displacement) }
\end{gathered}
$$

Distance travelled when $t=4 \mathrm{sec}$ to $t=5 \mathrm{sec}$

$$
\begin{gathered}
=x_{5}-x_{4} \\
=(-60)-(-52) \\
=8 \mathrm{~m}(\text { Negative Displacement })
\end{gathered}
$$

A train running at $\mathbf{8 0} \mathrm{km} / \mathrm{h}$ is brought to a standing halt after 50 seconds.
Find the retardation and the distance traveled by the train before it comes to a halt.

Given :

$$
\text { Initial Velocity, } \quad \begin{aligned}
\mathrm{U} & =80 \mathrm{Km} / \mathrm{hr} \\
& =\frac{80 \times 1000}{3600} \\
\text { Final Velocity, } \quad \mathrm{V} & =22.22 \mathrm{~m} / \mathrm{s} \\
\text { time, } \quad \mathrm{t} & =0 \\
& =50 \mathrm{sec} .
\end{aligned}
$$

To find:

$$
\begin{aligned}
& \text { retardation, } \mathrm{a}=\text { ? } \\
& \text { distance travelled, } \mathrm{s}=\text { ? }
\end{aligned}
$$

Solution:

$$
\begin{align*}
\mathrm{v} & =\mathrm{u}+\mathrm{at} \\
0 & =22.22+\mathrm{a}(50) \\
& =-0.44 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{v}^{2}-\mathrm{u}^{2} & =2 \mathrm{as} \\
\frac{0-(22.22)^{2}}{2 \times(-0.44)} & =\mathrm{S} \\
\mathrm{~S} & =561 \mathrm{~m} \tag{Ans}
\end{align*}
$$

Two trains A and B leave the same station on parallel lines. A starts with a uniform acceleration of $0.15 \mathrm{~m} / \mathrm{s}^{2}$ and attains the speed of $24 \mathrm{~km} / \mathrm{hour}$ after which its speed remains constant. B leaves 40 seconds later with uniform acceleration of $0.30 \mathrm{~m} / \mathrm{s}^{2}$ to attain a maximum of $48 \mathrm{~km} / \mathrm{hour}$, its speed also becomes constant thereafter. When will B overtake A

Solution :

Consider the motion of Train A:
Initial velocity, $\quad \mathrm{u}=0$
Final velocity, $\quad V=24 \mathrm{~km} / \mathrm{hr}$

$$
=\frac{24 \times 1000}{3600}=6.67 \mathrm{~m} / \mathrm{s}^{2}
$$

Acceleration, $\mathrm{a}=0.15 \mathrm{~m} / \mathrm{s}^{2}$
$T=$ time taken when the train B will overtake the train A from its start.
$t_{A}=$ time taken by train A to attain a speed of $6.67 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{array}{ll}
\mathrm{V} & =\mathrm{u}+\mathrm{a}_{\mathrm{A}} \\
6.67 & =0+0.15 \mathrm{t}_{\mathrm{A}} \\
\mathrm{t}_{\mathrm{A}} & =44.67 \mathrm{sec} .
\end{array}
$$

Distance travelled by train a in 44.67 sec .

$$
\begin{aligned}
& S_{1}=u i_{\Lambda}+\frac{1}{2} \text { ar }_{\Lambda}{ }^{2} \\
& S_{1}=0+\frac{1}{2} 0.15 \times(44.67)^{2} \\
& S_{1}=150 m
\end{aligned}
$$

Since the train B leaves 40 seconds later, so that the train A has travelled ($\mathrm{T}+40$) sec.
\therefore Distance travelled by train A in $(T+60)$ sec,

$$
\begin{align*}
& S_{\Lambda}=S_{1}+V\left[(T+60)-t_{A}\right] \\
& S_{\Lambda}=150+6.67[(T+60)-44.67] \tag{1}
\end{align*}
$$

Consider the motion of Train 13
Initial velocity, $u=0$
Final velocity, $V=48 \mathrm{~km} / \mathrm{hr}$

$$
=\frac{48 \times 1000}{3600}=13.34 \mathrm{~m} / \mathrm{s}
$$

Acceleration, $a=0.30 \mathrm{~m} / \mathrm{s}^{2}$
$t_{B}=$ time taken by train B to attain a speed of $13.34 \mathrm{~m} / \mathrm{s}$.

$$
\begin{array}{ll}
\mathrm{V} & -\mathrm{u}+\mathrm{a} \mathrm{t}_{\mathrm{B}} \\
13.34 & -\mathrm{e} .0 .3 \mathrm{t}_{\mathrm{B}} \\
\mathrm{t}_{\mathrm{B}} & =44.47 \mathrm{sec} .
\end{array}
$$

Distance travelled by train B in 44.47 sec.

$$
\begin{array}{ll}
\mathrm{S}_{2} & -\mathrm{ut}_{\mathrm{B}}+\mathrm{at}_{\mathrm{B}}^{2} \\
\mathrm{~S}_{2} & -0+\frac{1}{2} 0.3 \times(44.47)^{2} \\
\mathrm{~S}_{2} & -296.63 \mathrm{~m}
\end{array}
$$

\therefore Distance travelled by train B in T seconds is

$$
\begin{gather*}
\mathrm{S}_{\mathrm{B}} \quad-\mathrm{S}_{2}+\mathrm{V}\left(\mathrm{~T}-\mathrm{t}_{\mathrm{B}}\right) \\
\left.\mathrm{S}_{\mathrm{B}}=296.63+13.34(\mathrm{~T}-44.47)-44.67\right] \tag{2}
\end{gather*}
$$

At the instent, when train B overtake trains will be equal. Hence

$$
\begin{aligned}
\mathrm{S}_{\mathrm{A}} & =\mathrm{S}_{\mathrm{B}} \\
150+6.67[(\mathrm{~T}+60)-44.67] & =296.63+13.34(\mathrm{~T}-44.47) \\
150+6.67 \mathrm{~T}+400.2-297.94 & =296.63+13.34 \mathrm{~T}-593.22 \\
6.67 \mathrm{~T}+252.26 & =13.34 \mathrm{~T}-296.59 \\
6.67 \mathrm{~T} & =548.85 \\
\mathrm{~T} & =\mathbf{8 2 . 2 8} \text { seconds } \quad \text { (Ans) }
\end{aligned}
$$

Car A accelerates uniformly from rest on a straight level road. Car B starting from the same point 6 seconds later with initial velocity accelerates at $6 \mathrm{~m} / \mathrm{s}^{2}$. It overtakes the car A at 400 m from the starting point. What is the acceleration of the car A?

Given :

Initial velocity of car $\mathrm{A}, \mathrm{u}_{\mathrm{A}}=0$
Initial velocity of car $B, u_{B}=0$
acceleration of car $B, a_{B}=6 \mathrm{~m} / \mathrm{s}^{2}$
Distance travelled by car A and car $B, S_{A}=S_{B}=400 \mathrm{~m}$

To Find :

Acceleration to car $\mathrm{A}, \mathrm{a}_{\mathrm{a}}=$?

Solution :

Let ' t_{A} ' be the time taken by car ' A '.
Since the car ' B ' starts 6 seconds later, the time taker car B is, $t_{B}=t_{A}-6$
Consider motion of car ' A '

$$
\begin{align*}
& \mathrm{S}_{\mathrm{A}}=\mathrm{u}_{\mathrm{A}} \mathrm{t}_{\mathrm{A}}+\frac{1}{2} \mathrm{a}_{\mathrm{A}} \mathrm{t}_{\mathrm{A}}^{2} \\
& 400^{-}=0+\frac{1}{2} \mathrm{a}_{\mathrm{A}} \mathrm{t}_{\mathrm{A}^{2}}^{2} \\
& \mathrm{a}_{\mathrm{A}} \mathrm{t}_{\mathrm{A}^{2}}=800 \tag{1}
\end{align*}
$$

A stone is dropped from the top of a tower. It strikes the ground after
four seconds. Find the height of the tower.

Given :

Time, $\mathrm{t}=4$ seconds
Initial Velocity, $u=0$
Acceleration, $\mathrm{a}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

To Find :

Height of tower, $\mathrm{h}=$?

Solution :

We know

$$
\begin{aligned}
& \mathrm{h}=u t+\frac{1}{2} \mathrm{at}^{2} \\
& \mathrm{~h}=0+\frac{1}{2} \times 9.81 \times 4^{2} \\
& \mathrm{~h}=78.48 \mathrm{~m}
\end{aligned}
$$

A stone is dropped into a well. The sound of the splash is heard 3.63 seconds later.How far below the ground is the surface of water in the well?

Assume the velocity of sound as $331 \mathrm{~m} / \mathrm{s}$

Given:

Velocity of sound, $v=350 \mathrm{~m} / \mathrm{s}$.
Initial velocity, $\mathbf{u}=0$

Solution:

Let $\mathrm{t}=$ time taken by stone to reach bottom of well
 Depth of well is

$$
\mathrm{h}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2}
$$

$$
\begin{align*}
& =0+\frac{1}{2} \times 9.81 \times \mathbf{t}^{2} \\
\mathbf{h} & =4.9 \mathbf{t}^{2} \tag{1}
\end{align*}
$$

We know,
Time taken by sound to reach the top

$$
\begin{aligned}
& =\frac{\text { Depth of well }}{\text { Velocity of sound }} \\
& =\frac{\mathrm{h}}{350} \\
& =\frac{4.9 \mathrm{t}^{2}}{350}
\end{aligned}
$$

It is given that,
Total time taken $=3$ seconds
Total time $\quad=$ time taken by stone to reach bottom of well + time taken by sound to reach the top of well.

$$
\begin{aligned}
3 & =\mathbf{t}+\frac{4.9 \mathrm{t}^{2}}{350} \\
1050 & =350 \mathrm{t}+4.9 \mathrm{t}^{2} \\
4.9 \mathrm{t}^{2}+350 \mathrm{t}-1050 & =0 \\
\mathbf{t} & =\frac{-350 \pm \sqrt{(350)^{2}-4 \times 4.9(-1050)}}{2 \times 4.9} \\
& =\frac{-350 \pm 378.26}{9.8} \\
\mathrm{t} & =2.9 \text { seconds}
\end{aligned}
$$

Substituting the value of ' t ' in equation (1) we get,

$$
\begin{aligned}
& \mathrm{h}=4.9(2.9)^{2} \\
& \mathrm{~h}=41.21 \mathrm{~m}
\end{aligned}
$$

(Ans)

A motorist is travelling at gokmph, when he observes a traffic light 250 m ahead of him turns red. The traffic light is timed to stay red for 12 sec . If the motorist wishes to pass the light without stopping-just as it turns green. Determine (i) the required uniform deceleration of the motor $2 i i$ the speed of the motor as it passes the traffic light.
Given data

$$
\begin{aligned}
\text { Initialvolocity } & =90 \times \frac{1000}{3600} \\
& =25 \mathrm{~m} / \mathrm{s} \\
t & =1230 c
\end{aligned}
$$

displacement $s=250 \mathrm{~m}$
Formula's Used

$$
\begin{aligned}
& S=u t+1 / 2 a t^{2} \\
& V=u+a t \\
& V^{2}=u^{2}+2 a s
\end{aligned}
$$

i)

$$
\begin{aligned}
& S=u t+1 / 2 a t^{2} \\
& 2 S 0=25 \times 12+1 / 2 a \times 12^{2}
\end{aligned}
$$

$a=-0.6944 \mathrm{~m} / \mathrm{s}^{2}$ (live sign indicates deceleration)
ii)

$$
\begin{aligned}
& V=u+a L \\
& V=2 s+(-0.6944) \times 12=16.67 \mathrm{~m} / \mathrm{s} \\
& \quad V=16.67 \times \frac{3600}{1000}
\end{aligned}
$$

$=60 \mathrm{kmph}$ Coped of the motorcycle as it passes the traffic Light)

Determine the time required for a car to travel 1 km along a road if the car starts from rest, reaches a maximum speed at some intermediate point, \& then whops ot the end of the road. The car can accelerate or decelerate at $1.5 \mathrm{~m} / \mathrm{s}^{2}$.

Solution
Given data

i) Consider the motion of car from $O \mathbb{A}$ Initial Velocity $u=0$; Final Velocity $\nu=\nu_{\max }$

Acceleration $a=1.5 \mathrm{~m} / \mathrm{s}^{2}$; Time $t=t_{1}$
Displacement $S=S$;

$$
\begin{aligned}
& V=u+a t \\
& V_{\text {max }}=0+1.5 t_{1} \ldots t_{1}=\frac{X_{\text {max }}}{1.5} \\
& S=u t+1 / 2 a t^{2} \\
& S=(0)\left(t_{1}\right)+\frac{1}{2} \times(1.5) \times\left(t_{1}^{2}\right) \\
& S_{1}=0.75\left(\frac{V_{\max }}{1.5}\right)^{2}
\end{aligned}
$$

ii) Consider the motion of Car from A ts B

Initial velocity $u=V_{\max }$; Final velocity $v=0$
Acceleration $a=-1.5 \mathrm{~m} / \mathrm{s}^{2}$, Time $t=t_{2}$
Displacement $s=S_{2}$

$$
\begin{aligned}
& V=u \text { tat } \\
& 0=V_{\text {max }}+(-1.5) \times t_{2} \cdots t_{2}=\frac{V_{\text {max }}}{1.5} \\
& S=u t+1 / 2 a t^{2} \\
& S_{2}=V_{\max }\left(\frac{V_{\text {max }}}{1.5}\right)+1 / 2(-1.5)\left(\frac{V_{\text {max }}}{1.5}\right)^{2} \\
& S_{2}=\frac{V_{\text {max }^{2}}}{1.5}-0.75\left(\frac{V_{\text {max }}}{1.5}\right)^{2}
\end{aligned}
$$

iii) Total displacement

$$
\begin{aligned}
& 1000=0.75\left(\frac{V_{\text {max }}}{1.5}\right)^{2}+\left[\frac{X_{\text {max }}^{2}}{1.5}-0.75\left(\frac{X_{\text {max }}}{1.5}\right)^{p}\right] \\
& 1000=\frac{X_{\text {max }}^{2}}{1.5} \\
& Y_{\text {max }}=38.73 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

iv) Total time $k=t_{1}+t_{2}$

$$
\begin{aligned}
& t=\frac{V_{\text {max }}}{1.5}+\frac{V_{\text {max }}}{1.5}=\frac{38.73}{1.5}+\frac{38.73}{1.5} \\
& t=51.64 \mathrm{sec} .
\end{aligned}
$$

Results

$$
\gamma_{\text {max }}=38.73 \mathrm{~m} / \mathrm{s}
$$

$$
\text { L. } 51.64 \mathrm{sec} .
$$

A train travelling with a speed of 90 kmph slow down on account of work in progress, at a retardation of 1.8 kmph per second to 36 km ph With this it travels 600 m . There after it gain further speed with 8.9 kmph per second till getting orginal speed. Find the delay caused

Solution
Given data

$$
\begin{aligned}
& Y_{1}=90 \times 5 / 18=25 \mathrm{~m} / \mathrm{s} \\
& Q_{1}=1.8 \times 5 / 18=0.5 \mathrm{~m} / \mathrm{s}^{2} \\
& V_{2}=36 \times 5 / 18=10 \mathrm{~m} / \mathrm{s} \\
& Q_{2}=0.9 \times 5 / 18=0.25 \mathrm{~m} / \mathrm{s}^{2} \\
& S_{2}=600 \mathrm{~m} .
\end{aligned}
$$

Formulas used

$$
\begin{aligned}
& S=u t+1 / 2 a t^{2} \\
& y^{2}=u^{2}+2 a s
\end{aligned}
$$

$S_{2}=600 \mathrm{~m}$.
Formulas used

$$
\begin{aligned}
& S=u t+1 / 2 a t^{2} \\
& y^{2}=u^{2}+2 a s \\
& v=u+a t .
\end{aligned}
$$

Step 1 （Constan acceleration） （deceleration）

$$
\begin{aligned}
& v=u+a t \\
& v_{2}=u+a_{1} t_{1} \\
& 10=2 s+(-0.5) t_{1} \quad t_{1}=30 \text { secs. } \\
& v^{2}=u^{2}+2 a s \\
& 10^{2}=2 s^{2}+2(-0.5) s_{1} \\
& 10^{2}-2 s^{2}=-1 s_{1} s_{1}=525 \mathrm{~m} \\
& \angle 525=+s_{1} \quad s_{1}
\end{aligned}
$$

Step: 2 Constant Velocity)
$S=u t+1 / 2 a t^{2}$ at constant velocity acceleration is 3 aero

$$
\begin{aligned}
S_{2} & =V_{2} t_{2} \\
600 & =10 \times t_{2} \\
t_{2} & =60 \text { secs. }
\end{aligned}
$$

Step:3 (Constant acceleration)

$$
\begin{aligned}
& v=u+a t \\
& v_{3}=v_{2}+a_{2} k_{3} \\
& 25=10+(0.25) \times t_{3} \\
& t_{3}=60 \sec
\end{aligned}
$$

$$
\begin{gathered}
v^{2}=u^{2}+2 a \Delta \\
2 s^{2}=10^{2}+2(0.25) s_{3} \\
\frac{(625-100)}{0.5}=s_{3} \\
s_{3}=1050 \mathrm{~m} .
\end{gathered}
$$

Total distance traveled $=S_{1}+S_{2}+S_{3}$

$$
=525+600+1050=2175 \mathrm{~m}
$$

Total time taken $=t_{1}+t_{2}+t_{3}$

$$
t=30+60+60=150 \mathrm{sec}
$$

If there would have been no work sized will be contr$\therefore V_{1}=25 \mathrm{~m} / \mathrm{s}$ time taken would be $E^{\prime}=S / v=\frac{2175}{25}$ $t^{\prime}=87 \mathrm{secs}$
Time delayed $t-t^{\prime}=150-87=63 \mathrm{sec}$

TWo electric trains. A \& B leave the came station parallel lines. The train Aptants from rest with a uniform acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ and oflains a spent If 45 kmph which is maintained constant of forward The train 8 leaves I minute aftercuards with o uniform acceleration of $\mathrm{C} \cdot \mathrm{m}_{\mathrm{m}} \mathrm{s}^{2}$ to attain maximum speed of 72 kmpt which is maintained constant af lerwerds. When will the train B overtake train A?
Solution:

Given olata

$$
\begin{array}{rl|l}
\text { Train A } & \text { Train } B \\
U_{A} & =0 & u_{B}=0 \\
a_{A} & =0.2 \mathrm{~m} / \mathrm{s}^{2} & Q_{B}=0.4 \mathrm{~m} / \mathrm{s}^{2} \\
V_{A} & =45 \mathrm{kmp} / \mathrm{h} & V_{B}=72 \mathrm{kmph} \\
& =45 \times \frac{1000}{3600} & =72 \times \frac{1000}{3600} \\
& =12.5 \mathrm{~m} / \mathrm{s} & =20 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
a_{A}=0.2 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
u_{A}=0
$$

Formulas wed

$$
\begin{aligned}
& S=u++1 / 2 a t^{2} \\
& v=u+a t \\
& v^{2}=u^{2}+2 a
\end{aligned}
$$

$$
\begin{array}{rlrl}
V_{A} & =45 \mathrm{kmph} \\
& =45 \times \frac{1000}{3600} & & =72 \times \frac{1000}{3600}
\end{array}
$$

Let t_{A} be the time taken by train A to reach maximum speed.
Distance travelled by Train A to reach maximum sleet.

$$
\begin{aligned}
S_{A_{1}} & =u_{A} t_{A}+1 / 2 a_{A} t_{a^{2}} \\
& =0+1 / 2(0 \cdot 2) t_{a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
V_{A} & =U_{A}+a_{A} t_{A} \\
12.5 & =0+(0.2) t_{A} \\
t_{A} & =\frac{12.5}{0.2} 62.5 \mathrm{sec} \quad t_{A}=62.5 \mathrm{sec}
\end{aligned}
$$

Sub $t_{A}=62.5 \mathrm{sec}$ in S_{A}

$$
\begin{aligned}
S_{A_{1}} & =1 / 2 \times(0.2)(62.5)^{2} \\
& =390.6 \mathrm{~m}
\end{aligned}
$$

Distance travelled by train B to reach maximum Speed

$$
\begin{aligned}
S_{B} & =u_{B} t_{B}+1 / 2 a_{B} t_{B}^{2} \\
& =0+1 / 2(0.4)\left(t_{B}\right)^{2} \\
& =1 / 2(0.4) t_{B}^{2} \\
V_{B} & =u_{B}+a_{B} t_{B} \\
20 & =0+0.4 t_{B} \\
t_{B} & =20 / 4=50 \mathrm{sec} .
\end{aligned}
$$

Sub $t_{B}=50 \mathrm{sec}$ in $S_{B_{1}}$

$$
\therefore S_{B_{1}}=1 / 2(0.4)(50)^{2}=500 \mathrm{~m}
$$

Let ' T ' be the time in second when train B will overtake the train A fromit start.

Train A has travelled for $(T+60)$ seconds
\Rightarrow Total distance travelled by the train A closing this time

$$
\begin{align*}
& S_{A}=390.6+12.5[(T+60)-62.5] \mathrm{m} \tag{1}\\
& s=u t+1 / 2 a t^{2} \text { at at }
\end{align*}
$$

Total distance travelled by train B

$$
\begin{equation*}
S_{B}=500+20(T-50) \mathrm{m} \tag{2}
\end{equation*}
$$

When train B overtakes train A the distance travelled by train $A \& B$ will be equal.
equating equations (1) $\&$ (2)

$$
\begin{gathered}
390.6+12.5[(T+60)-62.5]=500+20(T-50) \\
12.5 T-31.3=109 \cdot 4+20 T-100 \\
7.5 T=1000-109.4-31 \cdot 3=859.3 \\
T=\frac{859.3}{7.5} \\
T=114.6 \text { sec. }
\end{gathered}
$$

The distance travelled by train A \& brain B from starting point is $1,792 \mathrm{~m}$

A stone is dropped from the top of a tower When it has fallen a distance of 10 m , another stone is dropped from a point 38 m below the top of tower. If both the stones reach the ground at the same time, calculate
i) height of the tower \&
ii) the velocity of the stones when they reach the Solution
Given data
Stone -1

$$
u_{1}=0
$$

Motion of stone (1)

Formulas used

$$
\Rightarrow h=\frac{981}{2} t_{1}^{2}+u_{1} t_{1}+10
$$

$$
\begin{aligned}
& h=u t+1 / 2 g t^{2} \\
& v^{2}=u^{2}+2 g h \\
& v=u+g t \\
& \quad g \rightarrow 9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Notion of stone (2)
h-height
for stone. ${ }^{2} u_{2}=0$

$$
\begin{aligned}
& h-38=u_{2} t_{2}+\frac{1}{2} \times 9.81 t_{2}^{2} \quad \begin{array}{r}
\text { W.k.t from } \\
\text { given data } \\
t_{1}=t_{2}
\end{array} \\
& \Rightarrow h=\frac{9.81}{2} t_{2}^{2}+38 \\
& \frac{9.81 t_{1}^{2}}{2}+u_{1} t_{1}+10=u_{2} t_{2}+\frac{9.81}{2} t_{2}^{2}+38 \\
& t_{F}=28 / 14=2 \text { secs. }
\end{aligned}
$$

Sub $t=2$ sec in above equation

$$
\begin{aligned}
& h=57.62 \mathrm{~m} . \\
& V^{2}=u^{2}+2 g h \\
& x_{1}^{2}=u_{4}^{2}+2 \times 9.8157 .62 \quad a=0 \\
& v_{1}=\sqrt{2 \times 9.81 \times 57.62} \\
& V_{1}=33.62 \mathrm{~m} / \mathrm{s}(1,) \text { An } \\
& V_{2}^{2}=u_{2}{ }^{2}+2 g h_{1} \\
& V_{2}=\sqrt{2 \times 981(h-38)} \\
& V_{2}=\sqrt{2 \times 9.81 \times 17.62} \\
& V_{2}=19.62 \mathrm{~m} / \mathrm{s}(1) \text { Ans }
\end{aligned}
$$

Drops of water fall from the roof of a building 16 m high, at regular interval of time then first drop strikes the ground, ot the same instant fifth drop starts its fall. Find the distance between individual drops in the air the instant first drop reaches the ground.
Solution
Given data
height. of the $]=16 \mathrm{~m}$ building drops of rain
water falls in regular interval of time

Notion of first drop

$$
\begin{aligned}
& u_{1}=0 \quad h=16 m \\
& h_{1}=u_{1} t_{1}+1 / 29 \cdot t_{1}^{2}
\end{aligned}
$$

Motion af first drop

$$
\begin{aligned}
& u_{1}=0 \quad h=16 \mathrm{~m} \\
& h_{1}=u_{1} t_{1}+1 / 23 . t_{1}^{2} \\
& 16=0+1 / 2 \times 7.81 t_{1}^{2} \\
& t t_{1}=1.8 \mathrm{sec}
\end{aligned}
$$

Let Δt be the time interval to start the motion of each drop. In a time interval of $t_{1}=1.8 \mathrm{sec}$, four drops have started their motion at regular interval of time.

$$
\begin{aligned}
& \text { ne. } \Delta t=\frac{t_{1}}{4}=\frac{1.8}{4}=0.4 \mathrm{~s} \mathrm{sec} \\
& t_{2}=t_{1}-\Delta t=1.8-0.45=1.35 \mathrm{sec} \quad t_{5}=t_{4}-\Delta t=0 \mathrm{sec} \\
& t_{3}=t_{2}-\Delta t=0.9 \mathrm{secs} \\
& t_{4}=t_{3}-\Delta t=0.45 \mathrm{ses}
\end{aligned}
$$

Notion of second drop

$$
\begin{aligned}
& h_{2}=4 t_{2}+1 / 29 t_{2}^{2} \\
& h_{2}=0+1 / 2(9.81) \times(1.3 \mathrm{~s})^{2} \\
& h_{2}=8.74 \mathrm{~m}
\end{aligned}
$$

Motion of third drop

$$
\begin{aligned}
& h_{3}=4 t_{3}+1 / 29 t_{3}^{2} \\
& h_{3}=0+1 / 2 \times 9.81 \times 0.9^{2} \\
& h_{3}=3.97 \mathrm{~m}
\end{aligned}
$$

Motion of fourth drop

$$
\begin{aligned}
& h_{4}=4 t_{4}+1 / 29 t_{4}^{2} \\
& h_{4}=0+1 / 2 \times 9.81 \times 0.45^{2} \\
& h_{4}=0.99 \mathrm{~m}
\end{aligned}
$$

Distance b/w individual drop
Distance $b / w 1^{\text {st }} \& 2^{\text {nd }}$ drop $=h_{1}-h_{2}=7.06 \mathrm{~m}$
Distance $b / w 2^{\text {nd }} \& 3^{r d}$ drop $=h_{2}-h_{3}=4.77 \mathrm{~m}$
Distance $b / w 3^{r d e} 4^{\text {th }}$ drop $=h_{3}-h_{4}=2.98 \mathrm{~m}$
Distance blu $4^{\text {th }}$ \& $5^{\text {th }}$ drop $=h_{4}-h_{5}=0.99 \mathrm{~m}$

Kinematics of Particles: Plane Curvilinear Motion

Curvilinear motion is defined as motion that occurs when a particle travels along a curved path.

Projectile motion follows a parabolic trajectory.

Trajectory. The path, traced by a projectile in the space, is known as trajectory.
Velocity of projection. The velocity, with which a projectile is projected, is known as the velocity of projection.

Angle of projection. The angle, with the horizontal, at which a projectile is projected, is known as the angle of projection.

Time of flight. The total time taken by a projectile, to reach maximum height and to return back to the ground, is known as the time of flight.

Range. The distance, between the point of projection and the point where the projectile strikes the ground, is known as the range. It may be noted that the range of a projectile may be horizontal or inclined.

General Equation for Projectile Motion

1. Time of flight $\quad T=\frac{2 u \sin \theta}{g}$
2. Horizontal range $\quad R=\frac{2 u^{2} \sin 2 \theta}{g}$
3. Maximum height of a projectile $\quad H_{\max }=\frac{u^{2} \sin ^{2} \theta}{2 g}$

A ball is thrown from horizontal level, such that it clears a wall 6 m high situated at a horizontal) distance of 35 m as shown in Fig. If the angle of projection is 60° with respect to the horizontal What should be the minimum velocity of projection?
Solution

$$
\begin{aligned}
y / h & =6 \mathrm{~m} \\
\theta & =60^{\circ}
\end{aligned}
$$

Formula Used

$$
\begin{aligned}
& y=x \cdot \tan \theta=\frac{9 x^{2}}{2 u^{2}}\left(1+\tan ^{2} \theta\right) \\
& 6=35 \times \tan 60^{\circ}-\frac{9.81 \times 35^{2}}{24^{2}}\left[1+\tan ^{2}(60)\right] \\
& c=20.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A ball is thrown by a boy in the street is caught by another boy on a balcony 4 m above t . ground and 18 m away after 2 sec . Calculate the initial velocity and the angle of projection.

Consider the Vortical motion under gravity

$$
\begin{aligned}
& h=u t+\frac{1}{2} 3 t^{2} \\
& 4=4 \sin \theta \times 2-\frac{1}{2} 9.81 \times(2)^{2} \\
& u \sin \theta=11.81-\theta
\end{aligned}
$$

Consider horizontal motion with constant velocity.

$$
\begin{aligned}
& s=x \times t \\
& 18=4 \cos \theta \times 2
\end{aligned}
$$

$$
\begin{equation*}
u \cos \theta=9 \tag{2}
\end{equation*}
$$

Dividing en (1)/(2)

$$
\begin{aligned}
& \tan \theta=11.81 / 7 \quad \theta=52.69^{\circ} \\
& \operatorname{sub} \theta=52.69 \text { in an (1) } \\
& u \sin 52.69=11.81 \\
& u=14.85 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A projectile is aimed at a mark on the horizontal plane through the point of projection. It falls 12 metres short when the angle of projection is 15°; while it overshoots the mark by 24 metres when the same angle is 45°. Find the angle of projection to hit the mark. Assume no air resistance.

Solution
hen angle of projection with the horizantel $\alpha_{1}=15^{\circ}$ horizontal Range $Q_{1}=R-15^{\circ}$

When the angle of projection with the horizons, $\alpha_{2}=45^{\circ}$ horizontal Range $R_{2}=R+24$ where R is horizontal Range.

Lot u =velocity of projection
$\alpha=$ Angle of projection to hit the mart.

We know that horigontd range of the projectile when $\alpha=15^{\circ}$

$$
\begin{aligned}
& R_{1}=\frac{u^{2} \sin 2 \alpha_{1}}{g}=\frac{u^{2} \sin \left(2 \times 15^{\circ}\right)}{g} \\
& (R-12)=\frac{u^{2} \sin 30^{\circ}}{g}=\frac{u^{2} \times 0.5}{g} \\
& 111 \text { ly } \\
& R 2=\frac{u^{2} \sin 2 \alpha_{2}}{g}=\frac{u^{2} \sin \left(2 x_{4}, 5\right)}{g} \\
& R+24=\frac{4^{2} \sin 90}{g}=\frac{u^{2} \times 1}{g} \text { (2) } \\
& \text { Sividing ean } \theta / \Theta \\
& \frac{P-12}{R+24}=\frac{0.5}{1} \text { or } R-12=0.5 R+12 \\
& R=\frac{24}{0.5}=48 \mathrm{~m}
\end{aligned}
$$

Substituting the value of $R=48 \mathrm{~m}$ in (1)

$$
\begin{array}{r}
48-12=\frac{u^{2} \times 0 \cdot 5}{g}=\frac{u^{2}}{2 g} \\
u^{2}=36 \times 2 g=72 g
\end{array}
$$

We know the horizontal distance blu the point of projection \& the mork (R)

$$
\begin{gathered}
48=\frac{u^{2} \sin 2 \alpha}{g}=\frac{72 g \sin 2 \alpha}{g}=72 \sin 2 \alpha \\
\sin 2 \alpha=\frac{48}{72}=0.667 \text { or } 2 \alpha=41.8^{\circ} \\
\alpha=20.9^{\circ} \\
u=26.57 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

NEWTON'S SECOND LAW OF MOTION

$m=$ Mass of a body,
$u=$ Initial velocity of the body,
$v=$ Final velocity of the body,
$a=$ Constant acceleration,
$t=$ Time, in seconds required to change the velocity from u to v, and
$F=$ Force required to change velocity from u to v in t seconds.
\therefore Initial momentum $=m u$
and final momentum $=m v$
\therefore Rate of change of momentum

$$
=\frac{m v-m u}{t}=\frac{m(v-u)}{t}=m a \quad\left[\because \frac{v-u}{t}=a\right]
$$

According to Newton's Second Law of Motion, the rate of change of momentum is directly proportional to the impressed force.

$$
\therefore F \propto m a=k m a
$$

A body of mass 7.5 kg is moving with a velcoity of $1.2 \mathrm{~m} / \mathrm{s}$. If a force of 15 N is applied on the body, determine its velocity after 2 s .

Solution.
Given: Mass of body $=7.5 \mathrm{~kg}$
Velocity $(u)=1.2 \mathrm{~m} / \mathrm{s}$
Force $(F)=15 \mathrm{~N}$ and time
$(t)=2 \mathrm{~s}$.
We know that acceleration of the body

$$
\begin{aligned}
a & =\mathrm{F} / \mathrm{m} \\
& =15 / 7.5 \\
& =2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

\therefore Velocity of the body after 2 seconds
$v=u+a t=1.2+(2 \times 2)=5.2 \mathrm{~m} / \mathrm{s}$ Ans.

A vehicle, of mass 500 kg , is moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$. A force of $200 \mathbf{N}$ acts on it for 2 minutes. Find the velocity of the vehicle :
(1) when the force acts in the direction of motion, and
(2) when the force acts in the opposite direction of the motion.

Solution.
Given: Mass of vehicle $(m)=500 \mathrm{~kg}$
Initial velocity $(u)=25 \mathrm{~m} / \mathrm{s}$
Force $(F)=200 \mathrm{~N}$
time $(t)=2 \mathrm{~min}=120 \mathrm{~s}$

1. Velocity of vehicle when the force acts in the direction of motion We know that acceleration of the vehicle,

$$
\begin{aligned}
\mathrm{a} & =\mathrm{F} / \mathrm{m}=200 / 500 \\
& =0.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

\therefore Velocity of the vehicle after 120 seconds
$v 1=u+a t=25+(0.4 \times 120)=73 \mathrm{~m} / \mathrm{s}$ Ans.
2. Velocity of the vehicle when the force acts in the opposite direction of motion.

We know that velocity of the vehicle in this case after 120 seconds,

$$
\begin{aligned}
& \left(\text { when } a=-0.4 \mathrm{~m} / \mathrm{s}^{2}\right), \\
& \begin{aligned}
v 2 & =u+a t \\
& =25+(-0.4 \times 120) \\
& =-23 \mathrm{~m} / \mathrm{s} \text { Ans. }
\end{aligned}
\end{aligned}
$$

Minus sign means that the vehicle is moving in the reverse direction or in other
words opposite to the direction in which the vehicle was moving before the force was made to act.

1) A 50 kg block kept on the top of a 15° Sloping surface is pushed down the plane with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $\mu_{k}=0.4$, determine the distance traveled by the block k the time it will take as it comes to rest.
Sol:
Given data:

$$
\begin{aligned}
& \text { Mass }(\mathrm{m})=50 \mathrm{~kg} \\
& \text { Initial velocity } n=20 \mathrm{~m} / \mathrm{s} \\
& \mu_{k}=0.4
\end{aligned}
$$

Sol:
i) Considering the $F \cdot B \cdot D$ of 50 kg block
ii) By Newton's second law, we have

$$
\begin{gathered}
\sum F_{y}=m a_{y}=0 \quad\left(\because a_{y}=0\right) \\
N-50 \times 9.81 \cos 15^{\circ}=0 \\
N=50 \times 9.81 \cos 15^{\circ} \\
\sum F_{x}=m a_{x} \\
50 \times 9.81 \sin 15^{\circ}-0.4 \times 50 \times 9.81 \cos 15^{\circ}=50 a \\
a=-1.25 \mathrm{~m} / \mathrm{s}^{2} \text { ((Retardation) }
\end{gathered}
$$

iii)

$$
\begin{aligned}
& u=20 \mathrm{~m} / \mathrm{s} \\
& v=0 \\
& v=u+a t \\
& 0=20+(-1.25) t \\
& t=16 \mathrm{sec}
\end{aligned}
$$

$$
a=-1.25 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
s=?
$$

$$
t=\text { ? }
$$

$$
\begin{aligned}
& S=u t+\frac{1}{2} a t^{2} \\
& S=20 \times 16+\frac{1}{2}(-1.25) \times(46)^{2} \\
& S=160 \mathrm{~m}
\end{aligned}
$$

2) Two blocks A (mass to kg), B (mass 28 kg) are separated by 12 m as shown in fig. If the blocks start moving find the time ' t ' when the blocks collide. Assume $\mu=0.25$ for block A \& plane $* \mu=0.10$ for block $B \&$ plane

Sol:

1) Considering the FBD of Block ' A '

Sol:

1) Considering the $F B D$ of Block ' A '

By Newton's second bur.

$$
\begin{aligned}
& \angle F_{x}=\max \\
& 10 \times 9.81 \sin B 0^{\circ}-0.25 \times 10 \times 9.91 \cos 30^{\circ}=10 a_{A} \\
& a_{A}=2.781 \mathrm{~m} / \mathrm{s}^{2} \text { (汇) }
\end{aligned}
$$

ii) Considering the F.B.D of Blocks ' B '

By trenton's Second law,

$$
\begin{aligned}
& I F_{x}=m a_{x} \\
& 29 \times 9.81 \sin 30^{\circ}-0.1 \times 28 \times 9.81 \cos 30^{\circ}=28 a_{B} \\
& n \text { of block } A a_{B}
\end{aligned} \begin{aligned}
& =4.055 \mathrm{~m} / \mathrm{s}^{2}(\text { F }
\end{aligned}
$$

ii) Nation of block A

$$
\begin{equation*}
d=0+\frac{1}{2} a_{A} t^{2} \tag{1}
\end{equation*}
$$

1) motion of block B

$$
\begin{equation*}
d+12=0+\frac{1}{2} a_{B} t^{2} \tag{2}
\end{equation*}
$$

v) from eqn (1) (2), we get

$$
\begin{aligned}
\frac{1}{2} \times 2.781 \times t^{2}+12 & =\frac{1}{2} \times 4.055 \times t^{2} \\
t & =4.34 \mathrm{sec}
\end{aligned}
$$

Thank You

