



## **Problem:**

Determine the force F that will give the system of bodies shown in figure. A velocity of 3 m/sec after moving 4.5m from rest. Co-efficient of friction between the blocks and the plane is 0.3 pulleys are smooth.



## Solution:

FBD of the system



$$\theta = \tan^{-1}\left(\frac{4}{3}\right)$$
$$\theta = 53.13'$$

Resolving forces vertically

|                    | SNS COLLEGE OF ENGINEERING<br>Kurumbapalayam (Po), Coimbatore – 641 107<br>Accredited by NAAC-UGC with 'A' Grade<br>Approved by AICTE & Affiliated to Anna University, Chennai |                          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Block A            | Block B                                                                                                                                                                        | Block C                  |
| $R_1 = 300N$       | $R_2 = 1200 \cos 53.13$                                                                                                                                                        | $R_3 = 600N$             |
|                    | $R_2 = 720 N$                                                                                                                                                                  |                          |
| Frictional Forces  |                                                                                                                                                                                |                          |
| $F_1 = \mu_1 R_1$  | $F_2 = \mu R_2$                                                                                                                                                                | $\mathbf{F}_3 = \mu R_3$ |
| $= 0.3 \times 300$ | $= 0.3 \times 720$                                                                                                                                                             | $= 0.3 \times 600$       |

w.snsgroups.com

$$F_1 = 90N$$
  $F_2 = 216 N$   $F_3 = 180N$ 

Applying work energy equation

 $U_{1-2} = T_1 - T_2$   $(-F + F_2 + F_2 + F_2 + 1200 \sin\theta) \times s = \frac{1}{2} (m_1 + m_2 + m_3) (v^2 - u^2)$   $(-F + 90 + 216 + 180 + 959.9) \times 4.5 = \frac{1}{2} \left(\frac{300 + 1200 + 600}{9.81}\right) (3^2 - 0)$  -4.5F + 6506.55 = 963.302 F = 1213.83N