SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

$$
\mathrm{T}=1.305 \mathrm{kN}
$$

Kinetics of Particles-Newton's Law of Motion

Newton's Second Law of Motion

The rate of change of momentum of a body is directly proportional to the applied force and motion takes place in the direction in which the force acts.

Force \propto Rate of change of momentum
Where momentum $=$ Mass \times Velocity

$$
=m \times v
$$

Rate of change of momentum $=$ Mass \times Rate of change of velocity

$$
\begin{aligned}
& =m \times a \\
& F \propto m a \\
& F=k m a
\end{aligned}
$$

By substituting the unit it us found that $\mathrm{k}=1$

$$
\mathrm{F}=\mathrm{ma}
$$

D' Alembert's Principle

It is the application of Newton's second law

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

The system of forces acting on a body in motion is in dynamic equilibrium with the inertia force of the body.

$$
F=m a
$$

$$
F-m a=0
$$

This equilibrium is called as equation of dynamic equilibrium.
In this equation 'ma' is called as an imaginary force (or) opposition force which is applied opposite to the direction of F or direction of motion. This force is called as 'Inertia force'.

Tips for solving the problems:
Step 1: Draw the free body diagram and kinetic diagram of the given system
Step 2: Resolve all the forces and inertia force
Step 3: Apply equation of motion and find out the unknowns

Problem:

A block weighting 2500 N rests on a horizontal plane for which co-efficient of friction is 0.20 . The block is pulled by a force 1000 N , which is acting at an angle of 30 to the horizontal. Find the velocity of the block after it moves 30 m starting from the rest.

Case 2: Lift moving downwards

$$
T=0.694 \mathrm{kN}
$$

Problem:

Masses A and B are 10 kg and 30 kg respectively. The co-efficient of friction between A and Plane is 0.25 and between B and plane is 0.15 . What is the force between the two as they slide down. What is the acceleration of masses?

Solution:

Resolving forces perpendicular to the plane

$$
\begin{gathered}
R_{1}=w_{1} \cos 30=10 \cos 30 \times 9.81 \\
=8.667 \times 9.81 \\
R_{1}=84.957 \mathrm{~N}
\end{gathered}
$$

Frictional force

$$
F_{1}=\mu_{A} R_{1}=0.25 \times 84.157
$$

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

$$
F_{1}=21.24 \mathrm{~N}
$$

Resolving forces parallel to the plane

$$
\begin{gathered}
-p-w_{1} \sin 30+m a+F_{1}=0 \\
-p-10 \times 9.81 \times \sin 30+10 \times a-21.24=0 \\
-p-27.81+10 a=0 \\
p-10 a+27.81=0 \rightarrow(1)
\end{gathered}
$$

Free body diagram of block B with inertia force

Resolving forces vertically

$$
\begin{gathered}
R_{2}-w_{2} \cos 30=0 \\
R_{2}=30 \times 9.81 \times \cos 30 \\
R_{2}=254.87 \mathrm{~N}
\end{gathered}
$$

Frictional Force

$$
\begin{gathered}
F_{2}=\mu_{2} \times R_{2}=0.15 \times 254.87 \\
F_{2}=38.23 \mathrm{~N}
\end{gathered}
$$

Resolving the forces parallel to the plane

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

$$
\begin{gathered}
-w_{2} \sin 30-p+m a+F_{2}=0 \\
-30 \times 9.81 \sin 30-p+30 a+38.23=0 \\
p-30 a-108.92=0 \rightarrow(2)
\end{gathered}
$$

Resolving Eq (1) \& (2)

$$
\begin{aligned}
& \therefore-10_{马}-27.81=0 \\
& s-30 \% \div 08.92=0 \\
& \frac{(-)(+)(+)}{-30 a \pm \pm-08.92}
\end{aligned}
$$

Sub a in (1)

$$
\begin{gathered}
p-10 \times 6.386+27.81=0 \\
p=36.05 \mathrm{~N}
\end{gathered}
$$

