SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade Approved by AICTE \& Affiliated to Anna University, Chennai

Problem 3:

A stone is dropped into a wall with no initial velocity and 4.5 seconds later the splash is heard. Then a second stone is thrown downward into the well with an initial velocity u and the splash is heard 4 seconds later. If the velocity of the sound is constant at $336 \mathrm{~m} / \mathrm{sec}$. Determine the initial velocity of the second stone.

Solution:

Step 1: Dropping first stone
Initial velocity $\mathrm{u}_{1}=0$
Let the stone taken t_{1} seconds to reach down the wall.
Since the splash is heard after 4.5 seconds, the time of travel of the second wave is $\left(4.5-t_{1}\right)$ seconds.
Depth of the well

$$
\begin{aligned}
\mathrm{S} & =\mathrm{u}_{1} \mathrm{t}_{1}+\frac{1}{2} \mathrm{gt}_{1}^{2} \\
& =0+\frac{1}{2} \mathrm{gt}_{1}^{2} \\
= & 1 / 2 \times 9.81 \times \mathrm{t}_{1}^{2} \\
\mathrm{~S} & =4.905 \mathrm{t}_{1}^{2} \rightarrow(1)
\end{aligned}
$$

Distance travelled by sound wave
S=Velocity of sound X Time of travelled

$$
S=336\left(4.5-t_{1}\right) \rightarrow(2)
$$

Substituting

$$
\begin{gathered}
4.905 \mathrm{t}_{1}^{2}+336 \mathrm{t}_{1}-1512=0 \\
\mathrm{t}_{1}=\frac{-336 \pm \sqrt{336^{2}-4(4.905)(-1512)}}{2(4.905)} \\
=\frac{-336 \pm 377.57}{9.81} \\
\mathrm{t}_{1}=4.238 \mathrm{or}-72.739 \\
\mathrm{t}_{1}=4.238 \mathrm{sec}
\end{gathered}
$$

Depth of the wall $\mathrm{s}=4.905 \times(4.238)^{2}=88.096 \mathrm{~m}$

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE \& Affiliated to Anna University, Chennai

Step 2: Dropping the second stone
Initial velocity $=\mathrm{u}_{2}$
Time taken by sound wave $=\left(4-t_{2}\right)$ sec

$$
\begin{gathered}
s=u_{2} t_{2}+\frac{1}{2} g t_{2}^{2} \\
88.096=u_{2} t_{2}+4.905 \times t_{2}^{2} \rightarrow(3)
\end{gathered}
$$

Distance travelled by the sound

$$
\begin{gathered}
\mathrm{s}=\text { Velocity of sound } \times \text { Time of travel } \\
\mathrm{s}=336\left(4-\mathrm{t}_{2}\right) \\
\frac{88.096}{336}=4-\mathrm{t}_{2} \\
\mathrm{t}_{2}=4-\frac{88.096}{336} \\
\mathrm{t}_{2}=3.738 \mathrm{sec}
\end{gathered}
$$

Substituting the value of t_{2} in (3)

$$
\begin{gathered}
88.096=u_{2}(3.738)+4.905(3.738)^{2} \\
3.738 \mathrm{u}_{2}=88.096-4.905(3.738)^{2} \\
\mathrm{u}_{2}=5.232 \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

