

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE & Affiliated to Anna University, Chennai

Problem 3:

A stone is dropped into a wall with no initial velocity and 4.5 seconds later the splash is heard. Then a second stone is thrown downward into the well with an initial velocity u and the splash is heard 4 seconds later. If the velocity of the sound is constant at 336m/sec. Determine the initial velocity of the second stone.

Solution:

Step 1: Dropping first stone

Initial velocity $u_1 = 0$

Let the stone taken t_1 seconds to reach down the wall.

Since the splash is heard after 4.5 seconds, the time of travel of the second wave is $(4.5 - t_1)$ seconds.

Depth of the well

$$S = u_1 t_1 + \frac{1}{2} g t_1^2$$

= 0 + $\frac{1}{2} g t_1^2$
= 1/2 × 9.81 × t_1^2
S = 4.905 $t_1^2 \rightarrow (1)$

Distance travelled by sound wave

S=Velocity of sound X Time of travelled S = $336(4.5 - t_1) \rightarrow (2)$

Substituting

$$\begin{aligned} &4.905t_1^2 + 336t_1 - 1512 = 0\\ t_1 &= \frac{-336 \pm \sqrt{336^2 - 4(4.905)(-1512)}}{2(4.905)}\\ &= \frac{-336 \pm 377.57}{9.81}\\ t_1 &= 4.238 \text{ or } -72.739\\ t_1 &= 4.238 \text{ sec} \end{aligned}$$

Depth of the wall $s = 4.905 \times (4.238)^2 = 88.096m$

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE & Affiliated to Anna University, Chennai

Step 2: Dropping the second stone

Initial velocity $=u_2$

Time taken by sound wave= $(4 - t_2)$ sec

$$s = u_2 t_2 + \frac{1}{2} g t_2^2$$

88.096 = u_2 t_2 + 4.905 × t_2^2 → (3)

Distance travelled by the sound

s = Velocity of sound × Time of travel s = 336 (4 - t₂) $\frac{88.096}{336} = 4 - t_2$ $t_2 = 4 - \frac{88.096}{336}$ $t_2 = 3.738$ sec

Substituting the value of t_2 in (3)

$$88.096 = u_2(3.738) + 4.905(3.738)^2$$
$$3.738u_2 = 88.096 - 4.905(3.738)^2$$
$$u_2 = 5.232 \text{ m/sec}$$