www.snsgroups.com

Problem 26: A slab of $4 \mathrm{~m} * 5 \mathrm{~m}$ carries from parallel forces as shown in fig. (locate the resultant force by scalar and vector approach.)

Solution:

Scalar approach

Magnititude of Resultant force $R=-4+5-3-6=-8 K N$

$$
R=8 K N(\downarrow)
$$

Talking moment of forces about x -axis

$$
\begin{aligned}
\sum m_{x}=-(4 & \times 4)-(3 \times 1)+(5 \times 2) \\
& =-15 \mathrm{KNm} \\
& =15 \mathrm{KNm}(\text { Anticlockwise })
\end{aligned}
$$

Talking moment about z -axis

$$
\begin{gathered}
\sum m_{z}=(4 \times 0)+(3 \times 1)+(6 \times 4)-(5 \times 3) \\
=12 \mathrm{KNm}(\text { clockwise })
\end{gathered}
$$

Let ' R ' be the resultant force passing through E of co-ordinates x, z as shown in fig.
Moment of resultant force about
x -axis

$$
\sum m_{x}=R \times Z
$$

$$
15=8 Z
$$

$$
Z=1.875 \mathrm{~m}
$$

lll $^{\text {ly }}$ moment of resultant force about Z axis

$$
\begin{aligned}
& \sum m_{z}=R \times x \\
& 12=8 x \\
& x=1.5 \mathrm{~m}
\end{aligned}
$$

Vector method:
Force vector of 4 KN is -4 j and co-ordinates $\mathrm{A}(0,0,4)$
Force vector of 5 KN is 5 j and co-ordinates $\mathrm{B}(3,0,2)$
Force vector of 3 KN is -3 j and co-ordinates $\mathrm{C}(1,0,1)$
Force vector of 6 KN is -6 j and co-ordinates $\mathrm{D}(4,0,1)$
The position vectors are

$$
\begin{aligned}
& \overrightarrow{r_{O A}}=4 K \\
& \overrightarrow{r_{O B}}=3 i+2 k \\
& \overrightarrow{r_{O C}}=i+k \\
& \overrightarrow{r_{O B}}=4 i+k
\end{aligned}
$$

$\therefore \quad$ Resultant vector, $\vec{R}=\overrightarrow{F_{A}}+\overrightarrow{F_{B}}+\overrightarrow{F_{C}}+\overrightarrow{F_{C}}$

$$
\begin{aligned}
& =-4 j+5 j-3 j-6 j \\
& =-8 j
\end{aligned}
$$

Resultant moment, $\vec{m}=\overrightarrow{r_{O A}} \times F_{A}+\overrightarrow{r_{O B}} \times F_{B}+\overrightarrow{r_{O C}} \times F_{C}+\overrightarrow{r_{O D}} \times F_{D}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
i & j & k \\
0 & 0 & 4 \\
0 & -4 & 0
\end{array}\right|+\left|\begin{array}{lll}
i & j & k \\
3 & 0 & 2 \\
0 & 5 & 0
\end{array}\right|+\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & 1 \\
0 & -3 & 0
\end{array}\right|+\left|\begin{array}{ccc}
i & j & k \\
4 & 0 & 1 \\
0 & -6 & 0
\end{array}\right| \\
& =[i[0-(-16)]+j(0)+k(0)]+[i(-10)-j(0)+k(15)]+[i(3)-j(0)+k(-3)]+
\end{aligned}
$$

$$
[i(6)-i(0)+k(-24)]
$$

$$
=16 i+(10 i+15 k)+(3 i-3 k)+(6 i-24 k)
$$

$$
\vec{m}=15 i+12 k \rightarrow(1)
$$

Let the resultant vector passing through a point P of co-ordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) hence

$$
\overrightarrow{r_{O P}}=x i+y j+2 k
$$

From varignon's theorem

$$
\begin{aligned}
& \overrightarrow{m_{O}}=\overrightarrow{r_{O P}} \times \vec{R}=\left|\begin{array}{ccc}
i & j & k \\
x & y & z \\
0 & -8 & 0
\end{array}\right| \\
& \quad 15 i-12 k=i(8 z)=j(0)+k(-8 x) \\
& \quad 15 i-12 k=8 z i-8 k x \\
& \therefore \quad 15=8 z \quad ; \quad-12=-8 z \\
& z=1.875 \mathrm{~m} \quad ; \quad x=1.5 \mathrm{~m}
\end{aligned}
$$

Co-oridnates of resultant R is $(1.5,0,1.875) \mathrm{m}$

Types of support in 3D force system:

Cable
Plane or smooth curved surface
Roller
Ball and socket
Plane or curved rough surface
Clamped or fixed
Single smooth pin

