

Problem 13: Determine the support reactions of the beam show in figure.

Solution:

First of all the inclined forces are to be resolved into two components.

Applying
$$\sum H = 0 (\rightarrow +)$$

$$10\cos 45^{\circ} - 8\cos 60^{\circ} - H_A = 0$$

$$H_A = 3.07 \ KN$$

 H_A is positive, hence direction of H_A assumed is correct (\leftarrow)

Applying
$$\sum V = O(\uparrow +)$$

$$V_A + V_B - 6 - 8\sin 60 - 10\sin 45 = 0$$

 $V_A + V_B = 20 KN$ (1)

Applying
$$\sum m_A = O(\gamma + 1)$$

$$(H_A \times 0) + (V_A \times 0) + (6 \times 2) + (8 \sin 60 \times 3.5) + (10 \sin 45 \times 6.5) - (V_B \times 7) = 0$$

 $V_B \times 7 = 8.22$

$$V_B = 11.74 \, KN$$

Sub
$$V_B = 11.74 \, KN \, in \, (1)$$

$$V_A + V_B = 20$$

$$V_A + 11.74 = 20 \, KN$$

$$V_A = 8.26 \, KN$$

Both V_{A} and V_{B} are positive, Hence assumed directions are correct. Both are acting upwards.

Results:

$$H_A = 3.07 \ KN(\leftarrow)$$

$$V_A = 8.26 \, KN(\uparrow)$$

$$V_B = 11.74 \, KN(\uparrow)$$

Problem 14: A beam AB of spam 10m is loaded as shown in fig Determine the recations at A and B.

Solution:

For u.d.1 total load is (3*4)=12 KN which acts at mid point of AC, i.e at $\frac{4}{2}=2m$ from A

Applying
$$\sum H = O(\rightarrow +)$$

$$H_R = 0$$

Applying $\sum V = 0(\uparrow +)$

$$V_A + V_B - 8 - 8 - (3 \times 4) = 0$$

$$V_A + V_B = 28$$
 \longrightarrow (1)

Applying $\sum m_A = 0 (^{\sim} +)$

$$(8 \times 6) + (8 \times 6) + (3 \times 4 \times \frac{4}{2}) - (V_B \times 10) = 0$$

$$V_B = 13.6 \, KN(\uparrow)$$

Substitute V_B in (1)

$$V_A = 14.4 \, KN(\uparrow)$$

Problem 15: Calculated the support reaction of a simply supported beam shown in fig

Solution:

Total udl load is $1 \times 4 = 4KN$ which is located at mid point of AC.

Total load of triangular load is area of the triangle i.e $\frac{1}{2} \times 8 \times 2 = 8KN$ acts at centroid of the triangle, at $\frac{2}{3} \times 8 = 5.33 \, m$ from B.

Applying
$$\sum H = 0$$
; $H_A = 0$

Applying
$$\sum V = O(\uparrow +)$$

$$V_A + V_B - (1 \times 4) - (\frac{1}{2} \times 8 \times 2) = 0$$

$$V_A + V_B = 12$$
 (1)

Applying
$$\sum m_A = 0$$
 ($^{\sim}+$)

$$\left(1 \times 4 \times \frac{4}{2}\right) - \left[8 \times (12 - 5.33)\right] - (V_B \times 12) = 0$$

$$12 V_B = 8 + 53.36$$

$$V_B = 5.11 \ KN \ (\uparrow)$$

Substitute V_B in (1)

$$V_A = 6.89 \, KN$$