Problem 13: Determine the support reactions of the beam show in figure.

Solution:
First of all the inclined forces are to be resolved into two components.

Applying $\sum H=0(\rightarrow+)$

$$
\begin{gathered}
10 \cos 45^{\circ}-8 \cos 60^{\circ}-H_{A}=0 \\
H_{A}=3.07 \mathrm{KN}
\end{gathered}
$$

H_{A} is positive, hence direction of H_{A} assumed is $\operatorname{correct}(\leftarrow)$
Applying $\quad \sum V=0(\uparrow+)$

$$
\begin{aligned}
& V_{A}+V_{B}-6-8 \sin 60-10 \sin 45=0 \\
& V_{A}+V_{B}=20 K N \longrightarrow(1)
\end{aligned}
$$

Applying $\sum m_{A}=O(\curvearrowright+)$

$$
\begin{gathered}
\left(H_{A} \times 0\right)+\left(V_{A} \times 0\right)+(6 \times 2)+(8 \sin 60 \times 3.5)+(10 \sin 45 \times 6.5)-\left(V_{B} \times 7\right)=0 \\
V_{B} \times 7=8.22 \\
V_{B}=11.74 K N
\end{gathered}
$$

Sub $V_{B}=11.74 K N$ in (1)

$$
\begin{aligned}
& V_{A}+V_{B}=20 \\
& V_{A}+11.74=20 \mathrm{KN}
\end{aligned}
$$

$$
V_{A}=8.26 K N
$$

Both V_{A} and V_{B} are positive, Hence assumed directions are correct. Both are acting upwards.
Results:

$$
\begin{aligned}
& H_{A}=3.07 \mathrm{KN}(\leftarrow) \\
& V_{A}=8.26 \mathrm{KN}(\uparrow) \\
& V_{B}=11.74 \mathrm{KN}(\uparrow)
\end{aligned}
$$

Problem 14: A beam $A B$ of spam 10 m is loaded as shown in fig Determine the recations at A and B.

Solution:
For u.d.l total load is $(3 * 4)=12 \mathrm{KN}$ which acts at mid point of AC, i.e at $\frac{4}{2}=2 \mathrm{~m}$ from A

Applying $\sum H=0(\rightarrow+)$

$$
H_{B}=0
$$

Applying $\sum V=0(\uparrow+)$

$$
\begin{gathered}
V_{A}+V_{B}-8-8-(3 \times 4)=0 \\
V_{A}+V_{B}=28 \longrightarrow(1)
\end{gathered}
$$

Applying $\sum m_{A}=0(\curvearrowright+)$

$$
\begin{gathered}
(8 \times 6)+(8 \times 6)+\left(3 \times 4 \times \frac{4}{2}\right)-\left(V_{B} \times 10\right)=0 \\
V_{B}=13.6 K N(\uparrow)
\end{gathered}
$$

Substitute V_{B} in (1)

$$
V_{A}=14.4 K N(\uparrow)
$$

Problem 15: Calculated the support reaction of a simply supported beam shown in fig

Solution:
Total udl load is $1 \times 4=4 K N$ which is located at mid point of AC.
Total load of triangular load is areaof the triangle i.e $\frac{1}{2} \times 8 \times 2=8 \mathrm{KN}$ acts at centroid of the triangle, at $\frac{2}{3} \times 8=$ 5.33 m from B.

Applying $\quad \sum H=0 ; H_{A}=0$
Applying $\quad \sum V=0(\uparrow+)$

$$
\begin{gather*}
V_{A}+V_{B}-(1 \times 4)-\left(\frac{1}{2} \times 8 \times 2\right)=0 \\
V_{A}+V_{B}=12 \tag{1}
\end{gather*}
$$

Applying $\sum m_{A}=0\left({ }^{\circ}+\right)$

$$
\begin{gathered}
\left(1 \times 4 \times \frac{4}{2}\right)-[8 \times(12-5.33)]-\left(V_{B} \times 12\right)=0 \\
12 V_{B}=8+53.36 \\
V_{B}=5.11 \mathrm{KN}(\uparrow)
\end{gathered}
$$

Substitute V_{B} in (1)

$$
V_{A}=6.89 \mathrm{KN}
$$

