Couple:

Two forces F and -F having the same magnitude, parallel lines of action and opposite sense one said to form a couple.
-Couple has a tendency to rotate the body
-The perpendicular distance between the parallel forces is called arm of the couple.

Here $\mathrm{OA}=\mathrm{x} ; \mathrm{OB}=(\mathrm{a}-\mathrm{x})$
Sum of moments at A
$\sum m_{A}=\mathrm{F} \times a()$
Sum of moments at B
$\sum m_{B}=\mathrm{F} \times a$

Sum of moments at o
$\sum m_{o}=(\mathrm{F} \times x)+(\mathrm{F} \times(a-x))$

$$
\mp \times x+F \times a-F \times x
$$

$\sum m_{o}=\mathrm{Fa}()$
The sum of the moments of couple forces about any point is same magnitude and nature.
Moment of a couple $=$ Force \times Arm of the couple
$\mathrm{m}=\mathrm{F} \times \mathrm{a}$

Difference between moment and couple

The couple is a pure turning effect which may be moved anywhere in its own plane or into a parallel plane without change of its effect of the body, but the moment of a force must include a description of the reference axis about which the moment is taken.

Types of Couple:

Based on its nature
(i) Clockwise couple
(ii) Anticlockwise couple

Vertical

Horizontal

Inclined

Clockwise couple

Anticlockwise couple
Resolution of a force into a force and a couple at a point

Principle of transmissibility of forces

If a force acts at any point on a rigid body it may also be considered to act at any other point on its line of action.

Problem 6:

A system of parallel forces are acting on rigid bar as shown in fig. Reduce the system to
(i) A single force
(ii) A single force and a couple at A
(iii) A single force and a couple at B.

Solution:
(i) Single force system

The single force system will consist only resultant force.
Magnitude of resultant force $\mathrm{R}=30-150+70-10$

$$
R=-60 \mathrm{~N}
$$

Direction of Resultant: Vertical \& Downwards (as R in negative)
Location of Resultant force
Sum of all moments about $\mathrm{A} \sum m_{A}=R \times x$

$$
\begin{aligned}
\sum m_{A} & =(30 \times 0)+(150 \times 1)-(70 \times 2)+(10 \times 3.5) \\
\sum m_{A} & =45 \mathrm{Nm}(\text { Clockwise }) \\
\sum m_{A} & =R \times x \\
45 & =60 \times x \\
x & =0.75 m
\end{aligned}
$$

(ii) A Single force and a couple at A

Clockwise couple
(iii) A single force and a couple at B

Anticlockwise couple

Problem 7:

A 4.8 m beam is subjected to the forces shown in fig. Reduce the given system of forces to
(i) A single force
(ii) An equivalent force - couple system at A
(iii) Force couple system at B.

Solution:
(i) A single force (or Resultant force)

Magnitude of Resultant, $\mathrm{R}=150-600+100-250$

$$
=-600 \mathrm{~N}
$$

Direction of Resultant force: Vertically downwards (R is (-))

Location of Resultant force
Algebric sum of moments of all forces $\sum m_{A}=(150 \times 0)+(600 \times 1.6)-(100 \times 2.8)+250(1.6+$ $1.2+2)$
$=1880$ Nm (Clockwise)
Sum of moments about $\mathrm{A}=$ moment of Resultant force about A
$1880=\mathrm{R} \times x$
$1880=600 \times x$
$x=3.13 m$

(ii) Force-Couple system at A

(iii) Force - Couple system at B

600N

