Problem 4:
Four forces of magnitude and direction acting on a square ABCD of side 2 m one shown in fig. calculate the resultant in magnitude and direction and also locate its point of application with respect to the sides $A B$ and $A D$

Solution:
Algebric sum of horizontal forces

$$
\sum H=12 \cos 45+10 \cos 30-4 \cos 30-60 \cos 60=10.681 \mathrm{KN}
$$

Algebric sum of vertical forces

$$
\begin{gathered}
\sum v=12 \sin 45-10 \sin 30-4 \sin 30+60 \sin 60 \\
=6.681 \mathrm{KN}
\end{gathered}
$$

Magnitude of the resultant force

$$
R=\sqrt{\left(\sum H\right)^{2}+\left(\sum v\right)^{2}}=\sqrt{(10.681)^{2}+(6.681)^{2}}=12.598 \mathrm{KN}
$$

Direction of the resultant force

$$
\alpha=\tan ^{-1}\left(\frac{\sum v}{\sum H}\right)=\tan ^{-1}\left(\frac{6.681}{10.681}\right)=32
$$

Location of the resultant force

$$
\begin{gathered}
\therefore \sum m_{A}=(4 \cos 30 \times 2)+(10 \sin 30 \times 2)-(10 \cos 30 \times 2)-(12 \sin 45 \times 2) \\
=-17.36 \text { KNm }(\text { Anticlockwise })
\end{gathered}
$$

Hence, to have anticlockwise moment by the resultant force, R is to be taken on the right hand side of A.

Location of resultant force w.r.t AB

Resolve the resultant force into two components $\sum H$ and $\sum V$ at m.

$$
\begin{aligned}
\sum m_{A} & =R \times x \\
& =\sqrt{\left(\sum H\right)^{2}+\left(\sum V\right)^{2}} \times x
\end{aligned}
$$

as $\sum H$ moment about A is zero.
So, $\quad \sum m_{A}=\sum V \times x$
$17.36=6.681 \times x$
$x=2.598 m$
Location of Resultant force w.r.t AD

Resolve the force
$\sum m_{A}=\sum H \times y$ (As moment of $\sum V$ about A is zero)
$17.36=10.681 \times y$
$y=1.625 m$

[^0]
[^0]: Statistics of Rigid bodies - Force couple system

