Sub Code: GE 8292
Subject: ENGINEERING MECHANICS

Semester: II
Unit - I: BASICS AND
STATICS OF PARTICLES

PART A

1. Define Coplanar \& concurrent forces. (AU JUN'10, DEC'10, DEC'12)
(a) Coplanar forces : If the line of action of all forces lie on same plane, then the forces are said to be coplanar forces.
(b) Concurrent forces : If the line of action of all forces meet at common point, then the forces are said to be concurrent forces.
2. What is the different between a resultant force and equilibrant force? (AU DEC'10,JUN'12)

Resultant Force: If a number of forces acting simultaneously on a particle, then these forces can be replaced by a single force which would produce the same effect as produced by all forces. This single force is called as resultant force.

Equilibrant force : The force which bring the set of forces in equilibrium is known as equilibrant force. It is equal in magnitude and opposite in direction of the resultant force.
3. State the necessary and sufficient conditions for static equilibrium of a particle in two dimensions. (AU JUN'12, DEC'11)
i) The algebric sum of horizontal components of all forces in Plane is Zero i.e., $\Sigma \mathrm{F}_{\mathrm{x}}=0$
ii) The algebric sum of all vertical components of all forces in plane is Zero i.e., $\Sigma \mathrm{F}_{\mathrm{y}}=0$
4. What is unit vector? (AU JUN'09)

A Vector, whose magnitude is unity is called as unit vector. A unit Vector is denoted by n.
ex : For vector $A B, n=\frac{\overrightarrow{A B}}{|A B|}$
5. State Lame's theorem. (AU JUN'12,DEC 10)

It states, "If three coplanar forces acting at a point be in equilibrium, then each force is proportional to the sine of angle between the other two".
Mathematically

$$
\frac{\mathrm{P}}{\sin \alpha}=\frac{\mathrm{Q}}{\sin \beta}=\frac{\mathrm{R}}{\sin \gamma}
$$

6. A force $\vec{F}=9 \hat{\imath}+6 \hat{\jmath}-15 \hat{k}$ acts through the origin. What is the magnitude of the force and the angle it makes with X, Y and Z axis? (AU DEC'09,JUN 09)

Given : $F=9 \mathbf{i}+6 \mathbf{j}-15 \mathbf{k}$
To find: $|\vec{F}|=F=$?

$$
\theta_{\mathrm{x}}=?, \quad \theta_{\mathrm{y}}=?, \quad \theta_{\mathrm{z}}=?
$$

Solution :

$$
\begin{aligned}
& F_{x}=9 \mathrm{~N}, \quad \mathrm{~F}_{\mathrm{y}}=6 \mathrm{~N}, \quad \mathrm{~F}_{\mathrm{z}}=-15 \mathrm{~N} \\
& |\vec{F}|=F=\sqrt{\left(F_{x}\right)^{2}+\left(F_{y}\right)^{2}+\left(F_{z}\right)^{2}} \\
& =\sqrt{9^{2}+6^{2}+(-15)^{2}}=18.49 \mathrm{~N} \\
& \cos \theta \mathrm{x}=\frac{\mathrm{Fx}}{\mathrm{~F}}=\frac{\mathrm{g}}{18.49}=0.4867 \\
& \Theta \mathrm{x}=\operatorname{Cos}^{-1}(0.4867)=60.87 \\
& \cos \theta_{y}=\frac{F_{y}}{F}=\frac{6}{18.49}=0.3244 \\
& \theta_{y}=\operatorname{Cos}^{-1}(0.3244)=71.06^{\circ} \\
& \operatorname{Cos} \theta_{z}=\frac{\mathrm{F}_{\mathrm{Z}}}{\mathrm{~F}}=\frac{-15}{18.49}=-0.8112^{\circ} \\
& \Theta_{z}=\operatorname{Cos}^{-1}(-0.8112)=144.2^{\circ}
\end{aligned}
$$

7. State Varignon's Theorem? (AU MAY'11)

If a number of coplanar forces are acting simultaneously on a body, the algebraic sum of the moments of all the forces about any point is equal to the moment of resultant force about the same point.
8. Find the magnitude of the resultant of the two concurrent forces of magnitude 60 kN and 40 kN with an included angle of 70° between them. (AU MAY'11)

Given :
Force, $P=60 \mathrm{kN}$
Force, $Q=40 \mathrm{kN}$
Included angle, $\Theta=70^{\circ}$
To Find :
Resultant, $R=$?

Solution :

By parallelogram law of forces,
$R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \Theta}$
$=\sqrt{60^{2}+40^{2}+2 \times 60 \times 40 \times \cos 70^{\circ}}$
$\mathbf{R}=82.7 / \mathrm{kN}$
(Ans)
9. A force of magnitude 500 N is passing through the origin and a point $\mathrm{A}(0.2,1,0) \mathrm{m}$. write the couple form of the force. (AU DEC'11)

Given :
Force, $|\vec{F}|=\mathrm{F}=500 \mathrm{~N}$
Point A ($0.2,1,0$) m
To Find :
Force vector $\overrightarrow{\mathrm{F}}=$?

Solution :

The given force passing through origion $O(O, O, O)$ and A $(0.2,1 ; 0)$
Position vector $\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{O}}$
$=(\mathrm{O} 2 \mathrm{i}+\mathrm{j}+\mathrm{ok})-(\mathrm{Oi}+\mathrm{Oj}+\mathrm{ok})$
$\overline{\mathrm{OA}}=0.2 \mathbf{i}+\mathbf{j}$
Magnitude of $\overrightarrow{\mathrm{OA}}=|\overrightarrow{\mathrm{OA}}|=\mathrm{OA}$

$$
=\sqrt{(0.2)^{2}+(1)^{2}}
$$

$\mathrm{OA}=1.02$
Unit vector along $O A, n_{D A}=\frac{\overline{O A}}{|\overline{O A}|}$

$$
=\frac{0.2 i+j}{1.02}=0.196 i+0.98 j
$$

Force vector, $\quad \vec{F}=F \cdot n_{O A}$

$$
\begin{aligned}
& =500(0.196 \mathbf{i}+0.98 \mathbf{j}) \\
\ddot{\mathrm{F}} & =98 \mathbf{i}+490 \mathbf{j}
\end{aligned}
$$

(Ans)
10. State the principal of transmissibility of forces with simple sketch. (AU JUN'09, DEC'11)

The conditions of equilibrium of motion of a rigid body remains unchanged, if a force acting at a given point of the rigid body is replaced by a force of same magnitude and clirection, but acting at a different point provided that the two forces have the same line of action.

PART B

1. Determine the resultant of the concurrent force system shown in the following Figure. (AU JUN'10, DEC'10, DEC'12)

Solution:

Resolving forces horizontally,

$$
\begin{aligned}
\Sigma H= & 150 \cos 30-200 \cos 30-80 \cos 60+180 \cos 45 \\
& =130-173.2-40+127.28 \\
\Sigma H \quad & =44.08 \mathrm{~N}
\end{aligned}
$$

Resolving forces vertically

$$
\begin{aligned}
& \Sigma \mathrm{V}=150 \sin 30+200 \sin 30-80 \sin 60-180 \sin 45 \\
&=75+100-69.28-127.28 \\
&=-21.56 \mathrm{~N} \\
& \text { Magnitude of Resultant } \\
& \mathrm{R}=\sqrt{\Sigma \mathrm{H}^{2}+\Sigma \mathrm{V}^{2}} \\
&=\sqrt{(44.08)^{2}+(21.56)^{2}} \\
& \mathbf{R} \quad=49.07 \mathrm{~N}
\end{aligned}
$$

Direction of resultant is

$$
\begin{aligned}
\tan \theta & =\frac{\Sigma V}{\Sigma H} \\
\theta & =\tan ^{-1}\left(\frac{21.56}{44.08}\right)=26.06 \text { (IV Quadrant) }
\end{aligned}
$$

The resultant force is shown in figure.

2. The following figure shows a 10 kg lamp supported by two cables $A B$ and $A C$. Find the tension in each cable. (AU JUN'10, DEC'10, DEC'12)

Given:

$$
\begin{aligned}
\text { mass of lamp } & =10 \mathrm{~kg} \\
\text { weight, } \mathrm{w} & =10 \times 9.81=98.1 \mathrm{~N}
\end{aligned}
$$

To find:

1) Tension in cable $A B, T_{A}$: $=$?
2) Tension in cable $A C, T_{A C}=$?

Solution:

From the given figure,
In angle $\mathrm{ABD}, \tan \theta_{1}=\frac{0.75}{1.5}=26.50^{\circ}$
In angle $A C D, \tan \theta_{2}=\frac{0.75}{2}=20.55$
The system of forces is shown in figure.

Applying Lami's theorem

$$
\frac{\mathrm{T}_{\mathrm{AC}}}{\sin 116.56}=\frac{\mathrm{T}_{\mathrm{AB}}}{\sin 110.55}=\frac{98.1}{\sin 132.89}
$$

3. The truck is to be towed using two ropes. Determine the magnitudes of forces F_{A} and F_{B} acting on each rope in order to develop a resultant force of 950 N directed along the positive X -axis. (AU MAY'11, JUN'12)

Given :

Inclination of $\mathrm{F}_{\mathrm{A}}, \theta_{\mathrm{A}}=20^{\circ}$, with x -axis.
Inclination of $F_{B}, \theta_{B}=50^{\circ}$, with x-axis
To Find :

$$
\mathrm{F}_{\mathrm{A}}=? ; \quad \mathrm{F}_{\mathrm{B}}=?
$$

Solution :
It is given that resultant force $\mathrm{R}=950 \mathrm{~N}$ acting along positive x -axis. Hence, $\Sigma \mathrm{H}=950 \mathrm{~N}$ and $\Sigma \mathrm{V}=0$.

Resolving forces Horizontally,

$$
\begin{align*}
& \Sigma \mathrm{H}=\mathrm{F}_{\mathrm{A}} \cos 20^{\circ}+\mathrm{F}_{\mathrm{B}} \cos 50^{\circ} \\
& 950=0.9396 \mathrm{~F}_{\mathrm{A}}+0.6427 \mathrm{~F}_{\mathrm{B}} \tag{1}
\end{align*}
$$

Resolving force vertically,

$$
\begin{align*}
\Sigma \mathrm{V} & =\mathrm{F}_{\mathrm{A}} \sin 20^{\circ}-\mathrm{F}_{\mathrm{B}} \sin 50^{\circ} \\
0 & =0.342 \mathrm{~F}_{\mathrm{A}}-0.766 \mathrm{~F}_{\mathrm{B}} \tag{2}
\end{align*}
$$

Solving equations (1) \& (2), we get,

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{A}}=774.53 \mathrm{~N} \\
& \mathbf{F}_{\mathbf{B}}=345.75 \mathrm{~N}
\end{aligned}
$$

(Ans)
(Ans)
4. Determine the magnitude and angle θ and F so that particle shown in figure, is in Equilibrium (AU MAY'11, JUN'12)

Given :

Inclination of force, $F=\theta$, with x-axis
Inclination of force $4.5 \mathrm{KN}=0$ with x -axis
Inclination of force 7.5 KN with x-axis $=(90-30)=60^{\circ}$ Inclination of force 2.25 KN with x -axis $=60^{\circ}$

To Find :

$$
\mathrm{F}=? ; \quad \theta=?
$$

Solution :
It is given that the particle ' P ' is in equilibrium. Hence Hence, $\Sigma \mathrm{H}=0$ and $\Sigma \mathrm{V}=0$.
Resolving forces horizontally,

$$
\begin{align*}
\Sigma \mathrm{H} & =\mathrm{F} \cos \theta-4.5 \cos 0^{\circ}-7.5 \cos 60^{\circ}+2.25 \cos 60^{\circ} \\
0 & =\mathrm{F} \cos \theta-4.5-3.75+1.125 \\
\mathrm{~F} \cos \theta & =7.125 \tag{1}
\end{align*}
$$

Resolving forces vertically,

$$
\begin{align*}
& \Sigma V=F \sin \theta+4.5 \sin 0^{\circ}-7.5 \sin 60^{\circ}-2.25 \sin 60^{\circ} \\
& 0=F \sin \theta+0-6.495-1.948 \\
& F \sin \theta=8.443 \tag{2}\\
& \frac{(2)}{(1)} \Rightarrow \frac{F \sin \theta}{F \cos \theta}=\frac{8.443}{7.125}
\end{align*}
$$

$$
\tan \theta=1.185
$$

$$
\begin{equation*}
\theta=49.84^{\circ} \tag{Ans}
\end{equation*}
$$

Put $\theta=49.84^{\circ}$ in eqn. (1), we get
$F \cos (49.84)=7.125$

$$
\begin{equation*}
\mathrm{F}=11 \mathrm{KN} \tag{Ans}
\end{equation*}
$$

5. $A B C D E$ is a light string whose end A is fixed. The weights W_{1} and W_{2} are attached to the string at $B \& C$ and the string passes round a small smooth wheel at D carrying a weight 40 KN at the free end E. In the position of equilibrium, $B C$ is horizontal and $A B$ and $C D$ make angles 150° and 120° with horizontal. (AU DEC'12)

Find (i) the tensions in AB, BC and DE of the given string (ii) magnitudes of W_{1} and W_{2}.

Solution :

Let us consider the pulley first the various forces acting are shown below:

At point D,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{DE}} & =40 \mathrm{kN} \\
\Sigma \mathrm{Fy} & =0 \\
-\mathrm{T}_{\mathrm{CD}} \sin 60^{\circ} \mathrm{T}_{\mathrm{DE}} & =0 \\
-0.866 \mathrm{~T}_{\mathrm{CD}}+40 & =0 \\
\mathbf{T}_{\mathrm{CD}} & =46.18 \mathrm{kN}
\end{aligned}
$$

(Ans)
Now consider joint C, the various forces acting at C is shown below

Applying Lami's Theorem at joint C,

$$
\frac{T_{C D}}{\sin 90^{\circ}}=\frac{T_{B C}}{\sin 150^{\circ}}=\frac{W_{2}}{\sin 120^{\circ}}
$$

$$
\frac{46.18}{\sin 90^{\circ}}=\frac{T_{\mathrm{BC}}}{\sin 150^{\circ}}=\frac{W_{2}}{\sin 120^{\circ}}
$$

$$
T_{B C}=\frac{46.18 \times \sin 150}{\sin 90^{\circ}}=23 \mathrm{kN}
$$

$$
W_{2}=\frac{46.18 \times \sin 120}{\sin 90^{\circ}}=40 \mathrm{kN}
$$

Now consider joint B, the various forces acting at ' B ' is shown in fig. Applying Lami's Theorem,

$$
\begin{gathered}
\frac{T_{A B}}{\sin 90^{\circ}}=\frac{W_{2}}{\sin 150^{\circ}}=\frac{T_{B C}}{\sin 120^{\circ}} \\
\mathrm{T}_{\mathrm{AB}}=\frac{\mathrm{T}_{\mathrm{BC}} \times \sin 90^{\circ}}{\sin 120^{\circ}}=26.56 \mathrm{kN} \\
\mathrm{~W}_{1}=\frac{\mathrm{T}_{\mathrm{BC}} \times \sin 150}{\sin 120^{\circ}}=13.28 \mathrm{kN}
\end{gathered}
$$

(Ans)
(Ans)
6. Find the magnitude and position of the resultant of the system of forces shown in Figure below. (AU JUN’09,DEC ‘ 10)

Solution:

The given force system is shown in the figure

To find magnitude of resultant:-

$$
\begin{aligned}
\text { Resultant, } & \mathrm{R}=-6-6-4+5+6 \\
& \mathrm{R}=5 \mathrm{kN} \text { (acting downwards) }
\end{aligned}
$$

To find the position of resultant:-

Let the resultant ' R ' acts at a distance ' x ' from point ' A '. By Varignon's theorem

$$
\begin{aligned}
\text { Algebric sum of all moments }= & \text { Moments of resultant } \\
\text { about ' } A \text { ' } & \text { about ' } A \text { ' }
\end{aligned}
$$

$$
\begin{aligned}
6 \times 0-6 \times 3-4 \times 5+5 \times 9+6 \times 12 & =\mathrm{R} \times x \\
0-18-20+45+72 & =5 \times x \\
79 & =5 x \\
x & =15.8 \mathrm{~m}
\end{aligned}
$$

Hence, resultant $\mathrm{R}=5 \mathrm{kN}$ acts at a distance $x=15.8 \mathrm{~m}$ from point ' A '
7. A horizontal force P normal to the wall holds the cylinder in the position shown in figure below. Determine the magnitude of P and the tension in each cable. (AU DEC'12)

Given:

Weight, $W=250 \mathrm{~kg}=250 \times 9.81=2452.5 \mathrm{~N}$

To find:

i) Magnitude of $\mathbf{P}=$?
ii) Tension in each cable

Solution:

Let $T_{A B}$ and $T_{A C}$ be the forces along the cables $A B$ and $A C$ respectively. The co-ordinates of various points are $A(1,2,0), B(0,14,9), C(0,14,-12)$.

Tension in Cable AB:

Position Vector $\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}}$

$$
=(0 \mathbf{i}+14 \mathbf{j}+9 k)-(\mathbf{i}+2 \mathbf{j}+0 \mathbf{k})
$$

$$
\overline{\mathbf{A B}}=-\mathbf{i}+12 \mathbf{j}+9 \mathbf{k}
$$

Magnitude of $\cdot \overrightarrow{\mathbf{A B}}=|\overrightarrow{\mathbf{A B}}|$

$$
=\mathrm{AB}=\sqrt{(-1)^{2}+12^{2}+9^{2}}
$$

$$
=15.03
$$

Unit vector along $A B$,

$$
\begin{aligned}
\mathbf{n}_{A B} & =\frac{\overrightarrow{A B}}{|\overrightarrow{A B}|} \\
& =\frac{-\mathbf{i}+12 \mathbf{j}+9 \mathrm{k}}{15.03} \\
& =-0.0665 \mathrm{i}+0.7984 \mathrm{j}+0.5988 \mathrm{k}
\end{aligned}
$$

Tension along $A B, \overrightarrow{T_{A B}}=T_{A B} \cdot n_{A B}$

$$
\begin{aligned}
& =\mathbf{T}_{A B}(-0.665 i+0.7984 j+0.5988 k) \\
& =-0.665 T_{A B} i+0.7984 T_{A B} i+0.5988 T_{A B} k
\end{aligned}
$$

```
Tension in Cabie AC:
    Position Vector \(\overrightarrow{\mathbf{A C}}=\overrightarrow{\mathbf{C}}-\overrightarrow{\mathbf{A}}\)
        \(=(\mathrm{Oi}+14 \mathrm{j}-12 \mathrm{k})-(\mathrm{i}+2 \mathrm{j}+\mathrm{Ok})\)
    \(\overrightarrow{\mathrm{AC}}=-\mathbf{i}+12 \mathbf{j}-12 k\)
```

Magnitude of $\overrightarrow{\mathrm{AC}}=\mid \overrightarrow{\mathrm{AC}}$

$$
=\mathrm{AC}=\sqrt{(-1)^{2}+12^{2}+(-12)^{2}}
$$

$$
\mathrm{AC}=17
$$

Unit vector along AC,

$$
\begin{aligned}
\mathbf{n}_{\mathrm{AC}} & =\frac{\overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AC}}|} \\
& =\frac{-\mathbf{i}+12 \mathbf{j}-12 k}{17} \\
& =-0.0588 \mathbf{i}+0.7058 \mathbf{j}-0.7058 \mathrm{k}
\end{aligned}
$$

Tension along $A C, \quad \overline{T_{A C}}=\mathbf{T}_{A C} \cdot \mathbf{n}_{A C}$

$$
\begin{aligned}
& =\mathrm{T}_{A C}(-0.0588 \mathrm{i}+0.7058 \mathrm{j}-0.7058 \mathrm{k}) \\
& =-0.0588 \mathrm{~T}_{A C} \mathrm{i}+0.7058 \mathrm{~T}_{A C} \mathrm{j}-0.7058 \mathrm{~T}_{A C} \mathrm{k}
\end{aligned}
$$

Force through weight,

$$
\vec{W}=W(-j)=-2452.5 j
$$

Force through P,

$$
\overrightarrow{\mathbf{P}}=\mathbf{P} . \mathbf{i}
$$

using equations of equilibrium

$$
\begin{align*}
\sum F_{\mathrm{x}} & =0 \\
& -0.665 \mathrm{~T}_{\mathrm{AB}}-0.0588 \mathrm{~T}_{\mathrm{AC}}+\mathrm{P}=0 \tag{1}\\
\sum \mathrm{~F}_{\mathrm{y}} & =0 \\
& 0.7984 \mathrm{~T}_{\mathrm{AB}}+0.7058 \mathrm{~T}_{\mathrm{AC}}-2452.5=0 \tag{2}
\end{align*}
$$

\qquad

$$
\Sigma F_{z}=0
$$

$$
\begin{equation*}
0.5988 \mathrm{~T}_{\mathrm{AB}}-0.7058 \mathrm{~T}_{\mathrm{AC}}=0 \tag{3}
\end{equation*}
$$

Solving equations (1), (2), \& (3) we get

$$
\begin{align*}
\mathrm{T}_{\mathrm{AB}} & =1755.8 \mathrm{~N} \\
\mathrm{~T}_{\mathrm{AC}} & =1489.1 \mathrm{~N} \\
\mathbf{P} & =204.3 \mathrm{~N} \tag{Ans}
\end{align*}
$$

8. Figure below shows three cables $A B, A C, A D$ that are used to support the end of a sign which exerts a force of $\vec{F}=\{250 i+450 j-450 k\} N$ at A. Determine the force develop in each cable. (AU DEC'11)

Solution :

Let $F_{A B}, F_{A C}$ and $F_{A D}$ be the forces acting along cables $A!$, AC and AD respectively.

From the geometry of figure, the co-ordinates of various points are
A $(3,0,3)$, B $(6,0,0)$,
C $(0,5,0), D(0,0,3)$

Force Acting along AB

Position vector of $A B$ is, $\overline{A B}=\vec{B}-\vec{A}$

$$
=(6 \mathbf{i}-0 \mathbf{i}+0 \mathrm{k})-(3 \mathrm{i}+0 \mathrm{i}+3 \mathrm{k})
$$

$\overrightarrow{\mathbf{A B}}=3 \mathbf{i}-3 \mathbf{k}$
Magnitude of $\overrightarrow{\mathrm{AB}}=|\overrightarrow{\mathrm{AB}}|=\mathrm{AB}=\sqrt{3^{2}+(-3)^{2}}=4.24$
Unit vector along $A B$ is $n_{A B}=\frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}$

$$
\begin{aligned}
& =\frac{3 i-3 k}{4.24} \\
\mathbf{n}_{\mathrm{AB}} & =(0.7075 \mathrm{i}-0.7075 \mathrm{k})
\end{aligned}
$$

Force in wire $A B, \overline{F_{A B}}=F_{A B} \cdot n_{A B}$

$$
\begin{aligned}
& =F_{A B}(0.7075 \mathrm{i}-0.7075 \mathrm{k}) \\
& =0.7075 \mathrm{~F}_{\mathrm{AB}} \mathrm{i}-0.07075 \mathrm{~F}_{\mathrm{AB}} \mathrm{k}
\end{aligned}
$$

Force acting along AC
Position vector of $A C$ is $\overrightarrow{A C}=\vec{C}-\vec{A}$

$$
=(0 \mathbf{i}+5 \mathbf{j}+0 k)-(3 \mathbf{i}+0 \mathbf{j}+3 \mathbf{k})
$$

$$
\overrightarrow{\mathrm{AC}}=-3 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}
$$

Magnitude of $\overrightarrow{\mathrm{AC}}=|\overrightarrow{\mathrm{AC}}|=\mathrm{AC}=\sqrt{(-3)^{2}+5^{2}+(-3)^{2}}=6.55$
Unit vector acting along $A C$ is $n_{A C}=\frac{\overrightarrow{A C}}{|\overrightarrow{A C}|}$

$$
=\frac{3 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}}{.6 .55}
$$

$$
\mathrm{n}_{\mathrm{AC}}=-0.458 \mathrm{i}+0.763 \mathrm{j}-0.458 \mathrm{k}
$$

Force in wire $A C, \overline{F_{A C}}=F_{A C} \cdot n_{A C}$

$$
\begin{aligned}
& =F_{A C}(-0.458 \mathrm{i}+0.763 \mathrm{j}-0.458 \mathrm{k}) \\
\overline{\mathrm{F}_{A C}} & =-0.458 \mathrm{~F}_{A C} \mathrm{i}+00763 \mathrm{~F}_{\mathrm{AC}} \mathrm{j}-0.458 \mathrm{~F}_{\mathrm{AC}} k
\end{aligned}
$$

Force acting along AD

Position vector of $A D$ is $\overrightarrow{A D}=\vec{D}-\vec{A}$

$$
=(0 \mathbf{i}+0 \mathbf{j}+3 \mathrm{k})-\mathrm{O} 3 \mathbf{i}+0 \mathbf{j}+3 \mathrm{k})
$$

$$
\overline{\mathrm{AD}}=-3 \mathbf{i}
$$

Magnitude of $\overline{\mathrm{AD}}=|\overrightarrow{\mathrm{AD}}|=\mathrm{AD}=\sqrt{(-3)^{2}}=3$
Unit vector acting along $A D$ is $n_{A D}=\frac{\overline{\mathrm{AD}}}{|\overrightarrow{\mathrm{AD}}|}=\frac{-3^{\circ}}{3}=-1^{\circ}$
Force in wire $A D, \overrightarrow{F_{A D}}=F_{A D} \cdot n_{A D}$
$\overline{F_{A C}}=-F_{A D} i$
It is given that force at A is

$$
\stackrel{\rightharpoonup}{\mathbf{F}}=250 \mathrm{i}+450 j-150 k
$$

Applying equations of equilibrium,
$\Sigma \mathrm{Fx}=0.7075 \mathrm{~F}_{\mathrm{AB}}-0.458 \mathrm{~F}_{\mathrm{AC}}-\mathrm{F}_{\mathrm{AD}}+250=0 \ldots \ldots$ (1)
$\Sigma \mathrm{F} y=0.763 \mathrm{~F}_{\mathrm{AC}}+450=0$
$\Sigma \mathrm{F} z=-0.7075 \mathrm{~F}_{\mathrm{AB}}-0.458 \mathrm{~F}_{\mathrm{AC}}-150=0$
Solving equations (1), (2) \& (3) we get,

$$
\begin{aligned}
& \mathbf{F}_{A C}=589.77 \mathrm{~N} \\
& \mathbf{F}_{\mathbf{A B}}=593.8 \mathrm{~N} \\
& \mathbf{F}_{\mathbf{A D}}=400 \mathrm{~N}
\end{aligned}
$$

(Ans)
(Ans)
(Ans)
9. In the figure shown, three wires are joined at D.

Tow ends A and B are on the wall and the other end C on the ground. The wire $C D$ is vertical. A force of 60 KN is applied at ' D ' and it passes through a point E on the ground as shown in figure. Find the forces in all the three wires. (AU JUN'10, JUN'12)

Given :

Co-ordinates are
$A(0,3,3), B(0,3,-3), C(1.5,0,0), D(1.5,2,0)$ and E (7.5, 0, 1.5)

Force acting along $\mathrm{DE}, \mathrm{F}_{\mathrm{DE}}=60 \mathrm{KN}$

To Find :

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{DA}}=? \\
& \mathrm{~F}_{\mathrm{DB}}=? \\
& \mathrm{~F}_{\mathrm{DC}}=?
\end{aligned}
$$

Solution :

Let $F_{D A}, F_{D B}, F_{D C}$ and $F_{D E}$ be the forces acting along DA, DB, DC and DE respectively.

Force in the wire DA

Force in the wire $D A$ is directed from D to A.
Position vector of DA is $\overline{\mathrm{DA}}=\overrightarrow{\mathrm{A}}-\overline{\mathrm{D}}$

$$
\begin{aligned}
& =(0 i+3 j=3 k)-(1.5 i+2 j+0 k) \\
\overline{\mathrm{DA}} & =-1.5 \mathrm{i}+j+3 k
\end{aligned}
$$

Magnitude of $\overline{\mathrm{DA}}=|\overline{\mathrm{DA}}|=\mathrm{DA}=\sqrt{(-1.5)^{2}+(1)^{2}+3^{2}}$
$\mathrm{DA}=3.5$
Unit vector along, $D A, n_{D A}=\frac{\overline{D A}}{D A}$

$$
\begin{aligned}
& =\frac{1.5 \mathrm{i}+\mathrm{j}+3 \mathrm{k}}{3.5} \\
\mathrm{n}_{\mathrm{DA}} & =-0.428 \mathrm{i}+0.285 \mathrm{j}+0.857 \mathrm{k}
\end{aligned}
$$

Force in wire DA, $\overline{F_{D A}}=F_{D A} \cdot n_{D A}$

$$
\begin{aligned}
& =F_{\mathrm{DA}}(-0.428 \mathbf{i}+0.285 j+0.857 \mathrm{k}) \\
\Gamma_{\mathrm{DA}} & =-0.428 \mathrm{~F}_{\mathrm{DA}} \mathrm{i}+0.285 \mathrm{~F}_{\mathrm{DA}} \mathrm{j}+0.857 \mathrm{~F}_{\mathrm{DA}} \mathrm{k} .
\end{aligned}
$$

Force in the wire DB :-
Position vector of DB is $\overline{\mathrm{DB}}=\overrightarrow{\mathrm{B}}-\overline{\mathrm{D}}$

$$
=(0 i+3 j-3 k)-(1.5 j+2 j+0 k)
$$

$$
\overline{\mathrm{DB}}=-1.5 \mathrm{i}+\mathbf{j}-3 \mathrm{k}
$$

Magnitude of $\overline{\mathrm{DB}}=|\overline{\mathrm{DB}}|=\mathrm{DB}=\sqrt{(-1.5)^{2}+1^{2}+(-3)^{2}}$
$\mathrm{DB}=3.5$
Unit vector along, $D B, n_{D B}=\frac{\overline{D B}}{\overline{D B}}$
$=\frac{1.5 i+j+-3 k}{3.5}$
$n_{D B}=-0.428 i+0.285 j+0.857 k$
Force in wire DB, $\overline{F_{D B}}=F_{\text {DB }} \cdot n_{D B}$
$n_{\text {DB }}=(-0.428 \mathrm{i}+0.285 j+0.857 k)$
$\overline{F_{D B}}=0.428 F_{D B} i+0.285 F_{D B} j+0.857 F_{D B} k$.

Force in the wire DC:

Position vector of $D C$ is $\overline{D C}=\vec{C}-\vec{D}$

$$
=(1.5 \mathbf{i}+0 \mathbf{j}-0 \mathbf{k})-(1.5 \mathbf{i}+2 \mathbf{j}+0 k)
$$

$\overline{\mathrm{DC}}=-\mathrm{Oi}-2 \mathbf{j}+\mathbf{O k}$
Magnitude of $\overline{\mathrm{DC}}=|\overline{\mathrm{DC}}|=\mathrm{DC}=\sqrt{\mathrm{o}^{2}+(-2)^{2}+\mathrm{O}^{2}}=2$
Unit vector along DC, $n^{n_{D C}}=\frac{\overline{D C}}{D C}$

$$
\begin{aligned}
& =\frac{0 \mathbf{i}+2 \mathbf{j}+0 \mathbf{k}}{2} \\
\mathbf{n}_{\mathrm{DC}} & =-\mathbf{j}
\end{aligned}
$$

Force in wire $D C \quad \overline{F_{D C}}=F_{D C} \cdot n_{D C}$

$$
\overline{F_{D C}}=-F_{D C} \mathbf{j}
$$

Force acting along DE :

$$
\begin{aligned}
& \text { Position vector of } D E \text { is } \overline{D E}=\bar{E}-\bar{D} \\
& \quad=(7.5 \mathbf{i}+0 j+1.5 k)-(1.5 \mathbf{i}+2 \mathbf{j}+0 k) \\
& \overline{D E}=6 \mathbf{i}-2 \mathbf{j}+1.5 k
\end{aligned}
$$

Magnitude of $\overline{\mathrm{DE}}=|\overline{\mathrm{DE}}|=\mathrm{DE}=\sqrt{ } \sigma^{2}+(-2)^{2}+(1.5)^{2}$
Unit vector along $D E, n_{D E}=\frac{\overline{D E}}{D E}$

$$
\begin{array}{ll}
& =\frac{6 i-2 j+1.5 k}{6.5} \\
n_{\text {DE }} & =0.923 i-0.307 j+0.2307 k
\end{array}
$$

Force acting along $D E, \quad \overrightarrow{F_{D E}}=F_{D E} \cdot n_{D E}$

$$
\begin{array}{ll}
\overrightarrow{F_{\mathrm{DE}}} & =60(0.923 i-0.307 \mathbf{j}+0.2307 \mathrm{k}) \\
\overrightarrow{\mathrm{F}_{\mathrm{DE}}} & =55.38 \mathbf{i}-18.42 \mathbf{j}+13.84 \mathrm{k}
\end{array}
$$

Applying equations of equilibrium,

$$
\begin{align*}
& \Sigma F_{x}=0 \\
& -0.428 \mathrm{~F}_{\mathrm{DA}}-0.428 \mathrm{~F}_{\mathrm{DB}}+55.38=0 \\
& \quad \mathrm{~F}_{\mathrm{DA}}+\mathrm{F}_{\mathrm{DB}}=129.39 \tag{1}\\
& \Sigma \mathrm{~F}_{y}=0
\end{align*}
$$

$0.285 \mathrm{~F}_{\mathrm{DA}}+0.285 \mathrm{~F}_{\mathrm{DB}}-\mathrm{F}_{\mathrm{DC}}-0.307=0$
$F_{D A}+F_{D B}-3.5 F_{D C}=1.077$
$\Sigma \mathrm{F}_{\mathrm{z}}=0$
$0.857 \mathrm{~F}_{\mathrm{DA}}-0.857 \mathrm{~F}_{\mathrm{DB}}+13.84=0$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{DA}}-\mathrm{F}_{\mathrm{DB}}=-16.149 \tag{3}
\end{equation*}
$$

Solving equations (1), (2) and (3), we get

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{D A}}=56.62 \mathrm{KN} \\
& \mathbf{F}_{\mathbf{D B}}=72.76 \mathrm{KN} \\
& \mathbf{F}_{\mathbf{D C}}=36.65 \mathrm{KN}
\end{aligned}
$$

10. Two forces act upon a tripod at ' P ' as shown in figure. The force 8 kN is parallel to x axis and the force 16 kN is parallel to y - axis. (AU MAY'11,JUN '12)

Determine the forces acting at the legs of tripod if the legs rest on ground at A, B, and C whose coordinates with respect to O are given. The height of the P above the origin is 10 m .

Given :

Co-ordinates

A (-4, 0, 0)
B ($5,0,2$)
C $(-2,0,-3)$

To Find :

Forces acting in: legs of tripod

Solutionk :

Let $F_{P A}, F_{P B}$ and $F_{P C}$ be the forces acting along the legs
A, B, and C of tripod respectively.
The Co-ordinate of $\mathrm{P}(\mathrm{O}, 10,0)$
Let $\quad F_{1}=8 \mathrm{kN}$
and $\quad F_{2}=16 \mathrm{kN}$
Since $F_{1}=8 \mathrm{kN}$ acting a long x-axis, its unit vector is i. .
Hence, $\bar{F}_{1}=F_{1} \cdot i=8 i$
Since $F_{2}=16 \mathrm{kN}$ acting parallel to y-axis, in downword direction, its unit vector is $-\mathbf{j}$

$$
\therefore \widehat{F_{2}}=F_{2} \cdot-j=-16 \mathbf{j}
$$

Force acting along PA :-
Position vector of PA is $\overline{\mathrm{PA}}=\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{P}}$

$$
\begin{aligned}
& =(-4 i+O j+O k)-(O i+1 O j+k) \\
\overline{P A} & =-4 i-10 j
\end{aligned}
$$

Magnitude of $\overline{\mathrm{PA}}=|\overline{\mathrm{PA}}|=\mathrm{PA}=\sqrt{(-4)^{2}+(-10)^{2}}=10.77$
Unit Vector along $\quad P A=n_{P A}=\frac{\overline{P A}}{|\overline{P A}|}$

$$
=\frac{-4 \mathbf{i}-10 \mathbf{j}}{10.77}=-0.371 \mathbf{i}-0.928 \mathbf{j}
$$

Force in $\operatorname{leg} \mathrm{PA}, \overline{\mathrm{F}_{\mathrm{PA}}}=\mathrm{F}_{\mathrm{PA}} \cdot \mathrm{n}_{\mathrm{PA}}$

$$
=\mathrm{F}_{\mathrm{PA}}(-0.371 \mathrm{i}-0.928 \mathrm{j})
$$

$$
\overline{F_{\mathrm{P} \Lambda}}=-0.371 \mathrm{~F}_{\mathrm{PA}} \mathrm{i}-0.928 \mathrm{~F}_{\mathrm{PA}} \mathrm{j}
$$

Force acting along PB:-
Position vector of PB is $\overline{\mathbf{P B}}=\overline{\mathbf{B}}-\overrightarrow{\mathbf{P}}$
$=\left(5 i+1 \mathrm{O}_{\mathrm{i}}+2 \mathrm{k}\right)-\left(\mathrm{Oi}+1 \mathrm{O}_{\mathrm{i}}+\mathrm{Ok}\right)$
$\overline{\mathrm{PB}}=5 \mathrm{i}-10 j: 2 k$
Magnitude of $\overline{\mathbf{P B}}=|\overrightarrow{\mathbf{P B}}|=\overrightarrow{\mathbf{P B}}=\sqrt{(5)^{2}+(-10)^{2}+2^{2}}=11.35$

Unit Vector along $\mathrm{PB}=\mathrm{n}_{\mathrm{PB}}=\frac{\overline{\mathrm{PB}}}{|\overrightarrow{\mathrm{PB}}|}$

$$
=\frac{5 i-10 j+2 k}{11.35}=0.44 i-0.88 j+0.176 k
$$

Force in leg $P B, \overrightarrow{F_{P B}}=F_{P B} \cdot n_{P B}$

$$
=\mathrm{F}_{\mathrm{PB}}(0.44 \mathrm{i}-0.88 \mathrm{j}+0.176 \mathrm{k})
$$

$\overrightarrow{\mathrm{F}_{\mathrm{PB}}}=0.44 \mathrm{~F}_{\mathrm{PB}} \mathrm{i}-0.88 \mathrm{~F}_{\mathrm{PB}} \mathrm{j}+0.176 \mathrm{~F}_{\mathrm{PB}} \mathrm{k}$
Force acting along PC:-
Position Vector of PC is $\overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{P}}$

$$
\begin{aligned}
& =(-2 i+0 j-3 k)-(0 i+10 j+0 k) \\
\overrightarrow{\mathrm{PC}} & =-\dot{2} i-10 j-3 k
\end{aligned}
$$

Magnitude of $\overrightarrow{\mathrm{PC}}=|\overrightarrow{\mathrm{PC}}|=\mathrm{PC}=\sqrt{(-2)^{2}+(-10)^{2}+(-3)^{2}}=10.63$
Unit Vector along PC is $n_{P C}=\frac{\stackrel{\rightharpoonup}{P C}}{|\overrightarrow{\mathrm{PC}}|}$

$$
=\frac{2 \mathrm{i}-10 \mathrm{j}+3 \mathrm{k}}{10.63}=-0.188 \mathrm{i}-0.94 \mathrm{j}-0.282 \mathrm{k}
$$

Force in leg $\mathrm{PC}, \overline{\mathrm{F}_{\mathrm{PC}}}=\mathrm{F}_{\mathrm{PC}} \cdot \mathrm{n}_{\mathrm{PC}}$

$$
=\mathrm{F}_{\mathrm{PC}}(-0.188 \mathrm{i}-0.94 \mathrm{j}-0.282 \mathrm{k})
$$

$\overline{\mathrm{F}_{\mathrm{PC}}}=-0.18^{\circ} \mathrm{F}_{\mathrm{PC}} \mathrm{i}-0.94 \mathrm{~F}_{\mathrm{PC}} \mathrm{j}-0.282 \mathrm{~F}_{\mathrm{PC}} \mathrm{k}$
Applying equations of equilibrium,

$$
\Sigma \mathrm{F} x=0
$$

$$
\begin{equation*}
8-0.371 \mathrm{~F}_{\mathrm{PA}}+0.44 \mathrm{~F}_{\mathrm{PB}}--0.94 \mathrm{~F}_{\mathrm{PC}}=0 \tag{1}
\end{equation*}
$$

$\Sigma \mathrm{F} y=0$
$-16-0.928 \mathrm{~F}_{\mathrm{PA}}-0.88 \mathrm{~F}_{\mathrm{PB}}-0.282 \mathrm{~F}_{\mathrm{PC}}=0$

$$
\begin{align*}
& \sum \mathrm{Fz}=0 \\
& 0.176 \mathrm{~F}_{\mathrm{PB}}-0.282 \mathrm{~F}_{\mathrm{PC}}=0 \tag{3}
\end{align*}
$$

Solving above equations we get,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{PA}}=77.58 \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{PB}}=53.03 \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{PC}}=33.09 \mathrm{kN}
\end{aligned}
$$

(Ans)
11. Forces R, S, T, U are collinear. Forces R and T act from left to right. Forces S and U act right to left. Magnitudes of the forces R, S, T, U are $40 \mathrm{~N}, 45 \mathrm{~N}, 50 \mathrm{~N}$ and 55 N respectively. Find the resultant of R, S, T, U. (AU JUN'09)
Given:
Force $\mathrm{R}, \mathrm{F}_{\mathrm{R}}=40 \mathrm{~N}$
Force $S, F_{S}=45 \mathrm{~N}$
Force $\mathrm{T}, \mathrm{F}_{\mathrm{T}}=50 \mathrm{~N}$
Force $\mathrm{U}, \mathrm{F}_{\mathrm{U}}=55 \mathrm{~N}$

To Find:

Resultant, $\mathrm{R}=$?

Solution:

The given forces are shown in the figure.

$$
\begin{align*}
\text { Resultant, } \mathrm{R} & =\mathrm{F}_{\mathrm{R}}+\mathrm{F}_{\mathrm{T}}-\mathrm{F}_{\mathrm{S}}-\mathrm{F}_{\mathrm{U}} \\
& =40+50-45-55 \\
\mathrm{R} & =-10 \mathrm{~N} \tag{Ans}
\end{align*}
$$

Resultant force $\mathrm{R}=10 \mathrm{~N}$ will act from right to left.
11. State the parallelogram law of forces (AU JUN'09, DEC 12)

When two forces are acting at a point, then parallelogram law is used to find the resultant force.

It states that, "If two forces, acting simultaneously on a particle be represented in magnitude and direction by the two adjacent sides of a parallelogram, then their resultant may be represented in magnitude and direction by the diagonal of the parallelogram, which passes through their point of intersection".
12. Distinguish between scalar and vector quantities. (AU JUN'09, DEC 10) Scalar Quantity :

Scalar Quantities are those which are completely defined by their magnitude only.

Ex : 2 kg of mass, $10 \mathrm{~m} / \mathrm{s}$ speed, $50^{\circ} \mathrm{C}$ temperature

Vector Quantity :

The Quantities which are defined by their magnitude and direction is known as vector quantity.

Ex: 20 N force acting vertically downwards
$9.8 \mathrm{~m} / \mathrm{S}^{2}$ acceleration directed towards centre of earth.

