

Solution:

Considering upper block

Resolving the force along the plane,

$$
\begin{array}{r}
\mathrm{T}-130 \sin \theta-\mathrm{F}_{1}=0 \\
\mathrm{~T}=130 \sin \theta+\frac{1}{3} \mathrm{~N}_{1} \rightarrow \tag{1}
\end{array}
$$

Resolving the force normal to the plane,

$$
\mathrm{N}_{1}=130 \cos \theta \rightarrow(2)
$$

Substitute (2) in (1)

$$
\begin{gathered}
T=130 \sin \theta+\left(\frac{1}{3} \times 130 \cos \theta\right) \\
T-130 \sin \theta+43.33 \cos \theta \rightarrow(3)
\end{gathered}
$$

Considering lower block

Resolving the force along the plane,

$$
\begin{array}{r}
\mathrm{F}_{1}+\mathrm{F}_{2}-390 \sin \theta=0 \\
\mu \mathrm{~N}_{1}+\mu \mathrm{N}_{2}=390 \sin \theta \\
\mu\left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)=390 \sin \theta \\
\frac{1}{3}\left(130 \cos \theta+\mathrm{N}_{2}\right)=390 \sin \theta \rightarrow(4)
\end{array}
$$

Resolving the force normal to the plane,

$$
\begin{gathered}
\mathrm{N}_{2}-\mathrm{N}_{1}-390 \cos \theta=0 \\
\mathrm{~N}_{2}=390 \cos \theta+\mathrm{N}_{1} \\
\mathrm{~N}_{2}=390 \cos \theta+130 \cos \theta=520 \cos \theta
\end{gathered}
$$

Sub N_{2} in (4)

$$
\begin{gathered}
390 \sin \theta=\frac{1}{3}(130 \cos \theta+520 \cos \theta) \\
390 \sin \theta=216.67 \cos \theta \\
\frac{\sin \theta}{\cos \theta}=\frac{216.67}{390} \\
\tan \theta=0.555 \\
\theta=\tan ^{-1}(0.555)=29^{\circ}
\end{gathered}
$$

Problem 5:

Block a weighting 1000 N rests on a rough inclined plane whose inclination to the horizontal is 45°. It is connected to another block B , Weighting 3000 N rests on a rough horizontal plane by a weightless rigid bar inclined at an angle of 30° to the horizontal as required shown in Figure. Find the horizontal force required to be applied to the block B just to move the block A in upward direction. Assume the angle of friction as 15^{0} at all surfaces where these is sliding.

Solution:

Given,

$$
\begin{gathered}
\phi=15^{\circ} \\
\mu=\tan \phi=\tan 15^{\circ}=0.268
\end{gathered}
$$

Let $\mathrm{T}=$ tension in the rod

Considering Freebody diagram of block A

Resolve the forces along the plane and equate to zero.

$$
\begin{gathered}
T \cos 15^{0}+F_{A}+1000 \sin 45^{0}=0 \\
0.966 \mathrm{~T}+\mu \mathrm{N}_{A}=-1000 \sin 45^{0} \\
0.966 \mathrm{~T}+0.268 \mathrm{~N}_{A}=-707.1 \rightarrow \text { (1) }
\end{gathered}
$$

Resolve the forces normal to the plane and equate to zero

$$
\mathrm{N}_{\mathrm{A}}-1000 \cos 45^{\circ}+\mathrm{T} \sin 15^{0}=0
$$

