$$
\mathrm{P}=103 \mathrm{~N}
$$

www.snsgroups.com

Angel of response

The normal reaction

$$
\mathrm{N}_{\mathrm{R}}=\mathrm{W} \cos \alpha
$$

w.k.t

$$
F=\mu N_{R}=\mu . W \cos
$$

When

$$
\begin{gathered}
\mu W \cos (F)>W \sin \alpha-\text { rest } \\
\mu \mathrm{W} \cos \alpha(\mathrm{~F})<\mathrm{W} \sin \alpha-\text { implementing motion }
\end{gathered}
$$

When the angle of place with horizontal α is increased $\mathrm{W} \sin \alpha$ will be more than $\mathrm{W} \cos \alpha$ and sliding window takes place .
"The angle of the inclined plane at which the body tends to slide is known as angle of response "." $\alpha_{m} "$

Hence for downward impending motion

$$
\begin{gathered}
\mu W \cos \alpha_{m} \leq W \sin \alpha_{m} \\
\mu \cos \alpha_{m}=\sin \alpha_{m} \\
\mu=\tan \alpha_{m}
\end{gathered}
$$

We know $\mu=\tan \phi$

$$
\begin{aligned}
\therefore \tan \phi & =\tan \alpha_{\mathrm{m}} \\
\phi & =\alpha_{\mathrm{m}}
\end{aligned}
$$

Cone of friction

When a body lying on a rough surface is subjected to a horizontal force P.

Cone of friction
P varied from o to 360^{0}

Problem 3:

A block is weight 150 N is resting on a rough inclined plane as shown in Figure. The block is tied by a horizontal string, which has a tension of 50N. Find
(i) The frictional force on the block.
(ii) The normal reaction of the inclined plane.
(iii) The coefficient of friction between the surfaces of contact.

Solution:

Resolving the forces along the plane.

$$
F+50 \cos 30-150 \sin 30=0
$$

$\mathrm{F}=31.7 \mathrm{~N}$

Resolving the forces normal to the inclined plane

$$
\begin{gathered}
\mathrm{N}_{\mathrm{R}}-50 \sin 30-150 \cos 30=0 \\
N_{R}=154.9 N
\end{gathered}
$$

Coefficient of friction $\mu=\frac{\mathrm{F}_{\mathrm{m}}}{\mathrm{N}_{\mathrm{R}}}=\frac{31.7}{154.9}=0.204$

Problem 4:

What should be the value of the angle θ so that motion of the 390 N block impends down the plane? The coefficient of friction μ for all surfaces is $1 / 3$.

