$$
\begin{gathered}
\left(1 \times 4 \times \frac{4}{2}\right)-[8 \times(12-5.33)]-\left(V_{B} \times 12\right)=0 \\
12 V_{B}=8+53.36 \\
V_{B}=5.11 \mathrm{KN}(\uparrow)
\end{gathered}
$$

Substitute V_{B} in (1)

$$
V_{A}=6.89 K N
$$

EQUILIBRIUM OF RIGID BODIES IN THREE DIMENSIONS

Moment of a figure about a point

$$
\begin{aligned}
& \text { If } \vec{r} \text { and } \vec{f} \text { are giving by } \\
& \qquad \vec{r}=x i+y j+z k
\end{aligned}
$$

and

$$
\vec{f}=f_{x} i+f_{y} j+f_{z} k
$$

Then moment

$$
\begin{aligned}
\vec{m} & =\vec{r} \times \vec{f} \\
\text { But } \quad \vec{m} & =m_{x} i+m_{y} j+m_{z} k
\end{aligned}
$$

Writing $\vec{m}=\vec{r} \times \vec{f}$

$$
\begin{gathered}
\vec{m}=\left|\begin{array}{ccc}
i & j & k \\
x & y & z \\
f_{x} & f_{y} & f_{z}
\end{array}\right| \\
\vec{m}=i\left(f_{z} y-f_{y} z\right)+j\left(f_{x} z-f_{z} x\right)+k\left(f_{y} x+f_{x} y\right) \\
m_{x}=f_{z} y-f_{y} z ; m_{y}=f_{x} z-f_{z} x ; m_{z}=f_{y} x-f_{x} y
\end{gathered}
$$

Magnitude of moment , $m=\sqrt{m_{x}^{2}+m_{y}^{2}+m_{z}^{2}}$
Direction of moment \vec{m}
Let the moment of \vec{m}, makes angles $\Phi_{x}, \Phi_{y}, \Phi_{z}$ about x, y and z axes

Then

$$
\cos \Phi_{x}=\frac{m_{x}}{m} \quad \Rightarrow \Phi_{x}=\cos ^{-1}\left(\frac{m_{x}}{m}\right)
$$

$111^{\text {ly }}$

$$
\Phi_{y}=\cos ^{-1} \frac{m_{y}}{m} \quad \text { and } \Phi_{z}=\cos ^{-1}\left(\frac{m_{z}}{m}\right)
$$

Note:
1.The point P may be taken any where on the line of action of \vec{f}

O

$$
\overrightarrow{m_{O}}=\overrightarrow{r_{O A}} \times \vec{F}=\overrightarrow{r_{O B}} \times \vec{F}
$$

2. In case, if moment about any arbitrary point B , of force \vec{F} acting at A is required, the relative position vector of A , with respect to B should be used (write this as $\frac{r_{A}}{B}$)

Case 1:When position vector of A and B are known

$$
\begin{aligned}
\overrightarrow{m_{B}} & =\overrightarrow{r_{\vec{B}}} \times \vec{F} \\
& =\left(\overrightarrow{r_{O A}}-\overrightarrow{r_{O B}}\right) \times \vec{F}
\end{aligned}
$$

Case 2: when coordinates of A and B are known
Then $\quad \overrightarrow{m_{B}}=\left|\begin{array}{ccc}i & j & k \\ \left(x_{A}-x_{B}\right) & \left(y_{A}-y_{B}\right) & \left(z_{A}-z_{B}\right) \\ f_{x} & f_{y} & f_{z}\end{array}\right|$
Problem 24: A pipe AC, 6 m long is fixed at C , and strectched by a cable from A to a point B on the vertical wall as shown in fig.If the tension in the cable is 400 N , determine
(i)The moment of the force exerted at A about C and
(ii)The moment of the force exerted at B about C

Soln:
Tension $T_{A B}$ of 400 N acts from A to B and Tension T_{BA} of same magnitude acts from B to A are the collinear from and the cable is in equilibrium.
T_{BA} produces clockwise moment about C , and
T_{AB} produces anticlockwise moment about C .
But magnitude of these two moments will to equal
Freebody diagram:

i)moment of force executed at A about C

In this case ,the force is directed from A to B

$$
\overrightarrow{T_{A B}}=T_{A B} \times \lambda_{A B}
$$

Now

$$
\begin{aligned}
& \lambda_{A B}=\frac{(0-6) i+(1-0) j+(-2-0) k}{\sqrt{(-6)^{2}+1^{2}+(-2)^{2}}} \\
& \lambda_{A B}=\frac{-6 i+1 j-2 k}{6.4} \\
& \overrightarrow{T_{A B}}=T_{A B} \cdot \lambda_{A B}=400\left[\frac{-6 i+1 j-2 k}{6.4}\right] \\
& \overrightarrow{T_{A B}}=-375 i+62.5 j-125 k
\end{aligned}
$$

$111^{\text {ly }}$

$$
\overrightarrow{r_{A C}}=(6-0) i+0 j+0 k=6 i
$$

\therefore Moment about C,

$$
\begin{aligned}
& \overrightarrow{m_{C}}=\overrightarrow{r_{A C}} \times \overrightarrow{T_{A B}} \\
& =6 i \times(-375 i+62.5 j-125 k) \\
& =\left|\begin{array}{ccc}
i & j & k \\
6 & 0 & 0 \\
-375 & 62.5 & -125
\end{array}\right| \\
& \overrightarrow{m_{C}}=750 j+375 k
\end{aligned}
$$

(ii) moment of force exerted at B about C

$$
\begin{aligned}
& \lambda_{B A}=\frac{(6-0) i+(0-1) j+(0+2) k}{\sqrt{6^{2}+1^{2}+2^{2}}}=\frac{6 i-1 j+2 k}{6.4} \\
& \therefore \overrightarrow{T_{B A}}=T_{B A} \cdot \\
& \lambda_{B A}=400\left[\frac{6 i-j+2 k}{6.4}\right] \\
&=375 i-62.5 j+125 k
\end{aligned}
$$

And

$$
\begin{aligned}
\overrightarrow{r_{B}}=(0-0) i & +(1-0) j+(-2-0) k=1 i-2 K \\
\therefore \overrightarrow{m_{C}} & =\overrightarrow{r_{\bar{C}}} \times \overrightarrow{T_{B A}} \\
& =(1 j-2 k) \times(375 i-62.5 j+125 k) \\
& =\left|\begin{array}{ccc}
i & j & k \\
0 & 1 & -2 \\
375 & -62.5 & 125
\end{array}\right| \\
& =(125-125) i-(0+750) j+(0-375) k \\
& \overrightarrow{m_{C}}=-750 j-375 k
\end{aligned}
$$

