

Solution:

Algebric sum of horizontal components

$$
\begin{aligned}
\sum H & =-10 \cos 45-4 \cos 30+8 \cos 30+12 \cos 60 \\
& =-7.071-3.464+6.928+6=2.393 N
\end{aligned}
$$

Algebric sum of vertical components

$$
\begin{gathered}
\sum v=-10 \sin 45-4 \sin 30-8 \sin 30+12 \sin 60 \\
=11.463 \mathrm{~N}
\end{gathered}
$$

Magnitude of the resultant force

$$
\begin{gathered}
R=\sqrt{\left(\sum H\right)^{2}+\left(\sum v\right)^{2}} \\
R=\sqrt{(2.393)^{2}+(11.453)^{2}}=11.71 \mathrm{~N}
\end{gathered}
$$

Direction of the resultant force

$$
\alpha=\tan ^{-1}\left(\frac{\sum H}{\sum v}\right)=\tan ^{-1}\left(\frac{11.463}{2.393}\right)=78.2
$$

Location of resultant force
Let us locate the resultant from the point A. Z-Perpendicular distance of resultant force from A.

$$
\sum m_{A}=R \times Z
$$

Algebric sum of the moments about A

$$
\begin{gathered}
\sum m_{A}=(-10 \sin 45 \times 0)+(4 \sin 30 \times 1)+(8 \sin 30 \times 2)-(12 \sin 60 \times 3) \\
\sum m_{A}=-21.176 \mathrm{Nm}
\end{gathered}
$$

(Moments of all other forces about the point A are zero, as they are passing through it).
(-) sign,
Hence, resultant force should also produce anticlockwise moment about A. Hence R should be taken on the right side A.

$$
\sum m_{A}=R \times Z
$$

$$
21.176=11.71 \times Z
$$

$$
Z=1.808 m
$$

To find x
In triangle AMN

$$
\begin{gathered}
A M N=90 \\
A M N=78.2(\alpha)
\end{gathered}
$$

$$
\begin{gathered}
\sin 78.2=\frac{A m}{A N}=\frac{Z}{x} \\
x=\frac{Z}{\sin 78.2}=\frac{1.808}{\sin 78.2}=1.847 \mathrm{~m}
\end{gathered}
$$

Alternate method

$$
\begin{gathered}
\sum M_{A}=R \times x \\
\sum M_{A}=\left(\sqrt{\left(\sum H\right)^{2}+\left(\sum v\right)^{2}}\right) \times x
\end{gathered}
$$

(moment of $\sum H$ about A is zero)

$$
\begin{gathered}
\sum M_{A}=\sum v \times x \\
x=\frac{\sum M_{A}}{\sum v}=\frac{21.176}{11.463}=1.847 \mathrm{~m}
\end{gathered}
$$

Problem 4:
Four forces of magnitude and direction acting on a square ABCD of side 2 m one shown in fig. calculate the resultant in magnitude and direction and also locate its point of application with respect to the sides AB and AD

Solution:
Algebric sum of horizontal forces

$$
\sum H=12 \cos 45+10 \cos 30-4 \cos 30-60 \cos 60=10.681 \mathrm{KN}
$$

Algebric sum of vertical forces

$$
\begin{gathered}
\sum v=12 \sin 45-10 \sin 30-4 \sin 30+60 \sin 60 \\
=6.681 \mathrm{KN}
\end{gathered}
$$

Magnitude of the resultant force

$$
R=\sqrt{\left(\sum H\right)^{2}+\left(\sum v\right)^{2}}=\sqrt{(10.681)^{2}+(6.681)^{2}}=12.598 \mathrm{KN}
$$

Direction of the resultant force

$$
\alpha=\tan ^{-1}\left(\frac{\sum v}{\sum H}\right)=\tan ^{-1}\left(\frac{6.681}{10.681}\right)=32
$$

Location of the resultant force

