The resultant of the force system shown in fig. is 520N along the negative direction of y axis. Determine P and θ

Solution:

Resultant is 520 N acting along the negative (\downarrow) direction of y axis.

As resultant force is a truly vertical downward force, $\Sigma H = 0$ and

 $\sum V = R = -520N.$

Let,

 $F_{1} = 200 \text{ N}, \qquad \theta_{1} = \tan^{-1} \left(\frac{3}{4}\right) = 36.87^{\circ}$ $F_{2} = P, \text{ angle is } \theta$ $F_{3} = 260 \text{ N}, \theta_{3} = \tan^{-1} \left(\frac{12}{5}\right) = 67.38^{\circ}$ $F_{4} = 360 \text{ N}, \theta_{4} = \tan^{-1} \left(\frac{3}{2}\right) = 56.31^{\circ}$

Algebraic sum of horizontal forces,

$$\sum H = 200 \cos 36.87 + P \cos\theta - 260 \cos 67.38 - 360 \cos 56.31$$
$$0 = 160 + P \cos\theta - 100 - 199.69$$
$$0 = P \cos\theta - 139.69$$
$$\therefore \square P \cos\theta = 139.69 \text{N} \rightarrow (1)$$

Algebraic sum of vertical forces,

 $\sum V = 200 \text{ Sin } 36.87^{\circ} - P \sin\theta - 260 \sin 67.38^{\circ} + 360 \sin 56.31^{\circ}$ -520 = 120 - P sin θ - 240 + 299.53 -520 = 179.53 - P sin θ P sin θ = 699.53 \rightarrow (2) $\frac{(2)}{(1)} \rightarrow \frac{p \sin}{p \cos} = \frac{699 \cdot 53}{139 \cdot 69}$ tan θ = 5.007 θ = tan ⁻¹ (5.007) = 78.7^{\circ} Substitute (2) in (1) P cos θ = 136.69 P = $\frac{136.69}{\cos 78.7}$ = 712.9N

<u>Problem:16:</u> A car is pulled by means of two cars as shown in figure. If the resultant of the two forces acting on the car A is 40KN being directed along the positive direction of X axis, determine the angle Q of the cable attached to the car at B, such that the force in cable AB is minimum. What is the magnitude of force in each cable when this occurs?

<u>To find θ for F_{AB} minimum:</u>

Here F_{AB} is minimum. For this condition the angle between F_{AB} and F_{AC} should be equal to 90⁰ (In the triangle length of the side will be minimum only when the sides are perpendicular to each other ($\angle ABC$, $ab \perp^r to bc$)

Triangle law

Forces in the cables

<u>Method of resolution (Alternate method)</u>

Resolving forces horizontally

$$\sum H = F_{AC} \cos 20^{0} + F_{AB} \cos 70^{0} \rightarrow (1)$$
$$\sum H = 0.939 F_{AC} + 0.342 F_{AB}$$

Resolving forces vertically

$$\sum V = F_{AC} \sin 20^{\circ} - F_{AB} \cos 70^{\circ}$$
$$= 0.342 F_{AC} - 0.939 F_{AB} \rightarrow (2)$$

Since the resultant force acting in positive direction of x axis, (given in problem)

$$R = \sum M = 40 \text{ KN } \& \sum V = 0$$
(1), (2) \Rightarrow

$$40 = 0.939 \text{ F}_{AC} + 0.342 \text{ F}_{AB}$$

$$0 = 0.342 \text{ F}_{AC} - 0.939 \text{ F}_{AB}$$

By solving we get

$$F_{AB} = 13.68$$
 KN and $F_{AC} = 37.587$ KN