Unit-1 STATICS OF PARTICLES

Topic-4

Vectorial Representation of Forces

VECTORIAL REPRESENTATION OF FORCE

- The quantities which possess magnitude as well as direction are called as vector quantities.
- Symbol of vector ' P ' is represented with an arrow such as
- Magnitude of vector is represented by or P.
- Free vector can be moved anywhere in space provided it maintains the same direction and magnitude.
- Sliding vector may be applied at any point along its line of action.
- Bound vector It will remain at the same point of application.
- Negative vector The negative of a vector P is the vector-P which has same magnitude \& inclination but in opposite direction.

VECTORIAL REPRESENTATION OF FORCE

- force: action of one body on another; characterized by its point of application, magnitude, line of action, and sense.
- Experimental evidence shows that the combined effect of two forces may be
 represented by a single resultant force.
- The resultant is equivalent to the diagonal of a parallelogram which contains the two forces in adjacent legs.
- Force is a vector quantity.

COMPONENTS OF FORCE

RECTANGULAR COMPONENTS OF A FORCE

- May resolve a force vector into perpendicular components so that the resulting parallelogram is a rectangle. \bar{F}_{x} and \bar{F}_{y} are referred to as rectangular vector components and

$$
\bar{F}=\bar{F}_{x}+\bar{F}_{y}
$$

- Define perpendicular unit vectors \bar{i} and \bar{j} which are parallel to the x and y axes.
- Vector components may be expressed as products of the unit vectors with the scalar magnitudes of the vector components.

$$
\bar{F}=F_{x} \bar{i}+F_{y} \bar{j}
$$

F_{x} and F_{y} are referred to as the scalar components of \bar{F}

