

# **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam(Po), Coimbatore – 641 97 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

> **Department of Artificial Intelligence and Data Science Course Name – 19AD601 – Natural Language** Processing

> > **III Year / VI Semester**

**Unit 2 – WORD LEVEL ANALYSIS** 

**Topic 4- Interpolation and Backoff** 







# **Interpolation and Backoff**

In backoff, we use the trigram if the evidence is sufficient, otherwise we use the bigram, otherwise the unigram.

In other words, we only "back off" to a lower-order n-gram if we have zero evidence for a higher-order ngram.

By contrast, in interpolation, we always mix the probability estimates from all the n-gram estimators, weighting and combining the trigram, bigram, and unigram counts.

In simple linear interpolation, we combine different order n-grams by linearly interpolating them.

Thus, we estimate the trigram probability P(wn|wn-2wn-1) by mixing together the unigram, bigram, and trigram probabilities, each weighted by a



λ:

### **Interpolation and Backoff**



**19AD601 - Interpolation backoff /NLP /IT / SNSCE** 



3/5



## **Interpolation and Backoff**

In a slightly more sophisticated version of linear interpolation, each  $\lambda$  weight is computed by conditioning on the context. Interpolation with context-conditioned weights:

$$\hat{P}(w_n | w_{n-2} w_{n-1}) = \lambda_1(w_{n-2:n-1})P(w_n) + \lambda_2(w_{n-2:n-1})P(w_n | w_{n-1}) + \lambda_3(w_{n-2:n-1})P(w_n | w_{n-2} w_n)$$

**19AD601 - Interpolation backoff /NLP /IT / SNSCE** 





### **THANK YOU**

**19AD601 - Interpolation backoff /NLP /IT / SNSCE** 

