
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 007

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and
Data Science

Course Name – 16AD601 – Natural Language
Processing

III Year / VI Semester

Unit 1 – Introduction

Topic 8- Dynamic Programming Edit Distance

2/716AD601 - Dynamic ProgrammingEdit Distance /NLP /IT / SNSCE

Dynamic Programming Edit Distance

Dynamic programming is the name for a class of algorithms, first introduced by Bellman (1957), that apply

a table-driven method to solve problems by combining solutions to subproblems. Some of the most

commonly used algorithms in natural language processing make use of dynamic programming.

The intuition of a dynamic programming problem is that a large problem can be solved by properly

combining the solutions to various subproblems.

The minimum edit distance algorithm was named by Wagner and Fischer but independently discovered by

many people.

3/716AD601 - Dynamic ProgrammingEdit Distance /NLP /IT / SNSCE

Dynamic Programming Edit Distance

Let’s first define the minimum edit distance between two strings. Given two strings, the source string X of

length n, and target string Y of length m, we’ll define D[i; j] as the edit distance between X[1::i] and Y[1::

j], i.e., the first i characters of X and the first j characters of Y. The edit distance between X and Y is thus

D[n;m].

We’ll use dynamic programming to compute D[n;m] bottom up, combining solutions to subproblems.

In the base case, with a source substring of length i but an empty target string, going from i characters to 0

requires i deletes.

With a target substring of length j but an empty source going from 0 characters to j characters requires j

inserts. Having computed D[i; j] for small i; j we then compute larger

4/716AD601 - Dynamic ProgrammingEdit Distance /NLP /IT / SNSCE

Dynamic Programming Edit Distance

If we assume the version of Levenshtein distance in which the insertions and deletions each have a cost of

1 (ins-cost(.) = del-cost(.) = 1), and substitutions have a cost of 2 (except substitution of identical letters

have zero cost), the computation for D[i; j] becomes:

5/716AD601 - Dynamic ProgrammingEdit Distance /NLP /IT / SNSCE

Dynamic Programming Edit Distance

6/716AD601 - Dynamic ProgrammingEdit Distance /NLP /IT / SNSCE

Dynamic Programming Edit Distance

7/716AD601 - Dynamic ProgrammingEdit Distance /NLP /IT / SNSCE

THANK YOU

