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Dynamic Programming Edit Distance

Dynamic programming is the name for a class of algorithms, first introduced by Bellman (1957), that apply
a table-driven method to solve problems by combining solutions to subproblems. Some of the most

commonly used algorithms in natural language processing make use of dynamic programming.

The intuition of a dynamic programming problem is that a large problem can be solved by properly
combining the solutions to various subproblems.

The minimum edit distance algorithm was named by Wagner and Fischer but independently discovered by
many people.
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Dynamic Programming Edit Distance

Let’s first define the minimum edit distance between two strings. Given two strings, the source string X of
length n, and target string Y of length m, we’ll define DI, j] as the edit distance between X[1::1] and Y[1::
], 1.e., the first I characters of X and the first j characters of Y. The edit distance between X and Y is thus

D[n;m].

We’ll use dynamic programming to compute D[n;m] bottom up, combining solutions to subproblems.

In the base case, with a source substring of length I but an empty target string, going from i characters to 0

requires I deletes.

With a target substring of length j but an empty source going from O characters to j characters requires |
Inserts. Having computed D[i; j] for small i; ] we then compute larger
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Dynamic Programming Edit Distance

( D]i—1, j]+ del-cost(sourceli))
D[i,j]=min{ DIi,j— 1]+ ins-cost(target]]))
Di—1, j— 1]+ sub-cost(sourceli), target|]])

If we assume the version of Levenshtein distance in which the insertions and deletions each have a cost of
1 (ins-cost(.) = del-cost(.) = 1), and substitutions have a cost of 2 (except substitution of identical letters
have zero cost), the computation for D[i; j] becomes:
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Dynamic Programming Edit Distance

function MIN-EDIT-DISTANCE(source, rarger) returns min-distance

i< LENGTH(source)
m+<— LENGTH(rarger)
Create a distance matrix D+l . m+1]

# Imirialization: the zeroth row and columnrn is the distance from the empity string
D[0.,0] =0
for each row 7 from 1 to n» do
D OJ<«—D]i-1.0] + del-cost(source|i])
for each column j from 1 to m do
DO ;] «— DO, j-1] + ins-cost(rarget|jl)

# Recurrence relation:
for each row  from 1 to n» do
for each column j from 1 to rm do
Dfi jf<— MIN( D[i—1.j] + del-cost(sourceli]).
Dli—1.7—1] + sub-cost(sourceli]. rarger|jl).
DNi.j— 1] + ins-cost(rarget|jl))

#H Terminariorn
return n.m]

The minimum edit distance algorithm. an example of the class of dynamic
programming algorithms. The wvarious costs can either be fixed (e.g., vx,ins-cost(x) = 1)
or can be specific to the letter (to model the fact that some letters are more likely to be in-
serted than others). We assume that there is no cost for substituting a letter for itself (i.e.,
sub-cost(x,x) = 0).
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Dynamic Programming Edit Distance

O
O
Src\ Tar # e X e C u t i 0 n O
& 0 1 2 3 4 5 6 I 8 9
1 1 2 3 4 S 6 7 6 7 8
n 2 3 4 d 6 ] 8 ] 8 ]
t 3 4 S 6 7 8 7 8 9 8
e 4 3 4 d 6 ] 8 9 0 9
n N 4 R 6 7 8 9 10 1 10
t 6 d 6 7 8 0 8 9 0 11
1 7 6 ] 8 9 10 9 8 9 10
0 8 7 8 9 10 11 10 9 8 9
n 9 8 9 10 11 12 11 10 9 8
Computation of minimum edit distance between intention and execution with

the algorithm of Fig. 2.17, using Levenshtein distance with cost of 1 for insertions or dele-
tions, 2 for substitutions.
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THANK YOU
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