Transient response for RC circuit
8.4.2.1 Step input

Consider the $R C$ series circuit with a $D C$ voltage applied through a switch as shown figure 3.10 . Let the capacitance have an initial charge of Q_{0} coulombs.

The initial voltage on the capacitor $V_{0}=\frac{Q_{0}}{C}$ Applying $K V L$, we get

$$
i R+\frac{1}{C} \int i d t+V_{0}=E
$$

If there is no initial charge $Q_{0}=0$ (i.e) $V_{0}=0$

Fig. 3.10

$$
\therefore i R+\frac{1}{C} \int i d t=E
$$

The above integral equation may be solved by using Laplace transformation.
Taking Laplace transform on both sides,

$$
\begin{aligned}
R I(s)+\frac{1}{C} \frac{I(s)}{s} & =\frac{E}{s} \\
\left(R+\frac{1}{s C}\right) I(s) & =\frac{E}{s} \\
I(s) & =\frac{E}{s\left(R+\frac{1}{s C}\right)} \\
I(s) & =\frac{E}{s R+\frac{1}{C}} \\
I(s) & =\frac{E}{R\left(s+\frac{1}{R C}\right)}
\end{aligned}
$$

Taking inverse Laplace transform on both sides,

$$
\begin{aligned}
i(t) & =\frac{E}{R} e^{-t / R C} \\
\left.i(t)\right|_{t=0} & =\frac{E}{R} \\
\left.i(t)\right|_{t=\infty} & =0
\end{aligned}
$$

Fig. 3.11

The initial value of the current is $\frac{E}{R}$ amperes, and the final steady state value is zero ampere.

Voltage across the resistor $e_{R}=i R=E e^{-t / R C}$
Voltage across the capacitor $\quad e_{c}=\frac{1}{C} \int_{0}^{t} i(t) d t$

$$
e_{c}=\frac{E}{C R} \int_{0}^{t} e^{-t / R C} d t
$$

$$
e_{c}=\frac{E}{C R}\left[\frac{-e^{-t / R C}}{1 / R C}\right]_{0}^{t}
$$

$$
e_{c}=-E\left(e^{-t / R C}\right)_{0}^{t}
$$

$$
e_{c}=-E\left(e^{-t / R C}-1\right)
$$

$$
e_{c}=E\left(1-e^{-t / R C}\right)
$$

e_{c} increases with time when $t=\infty$ (steady state condition), e_{c} is equal to the appliec voltage and opposing it. The current i then becomes zero.

Time constant $\tau=R C$ seconds

$$
\begin{aligned}
& P_{R}=e_{R} i=\frac{E^{2}}{R} e^{-2 t / R C} \\
& P_{C}=e_{C} i=E\left(1-e^{-t / R C}\right) \frac{E}{R}\left(e^{-t / R C}\right) \\
& P_{C}=\frac{E^{2}}{R}\left(e^{-t / R C}-e^{-2 t / R C}\right)
\end{aligned}
$$

The energy stored in the capacitor is obtained by integrating P_{C} from 0 to ${ }^{\infty}$.

$$
\begin{aligned}
& E_{C}=\frac{E^{2}}{R} \int_{0}^{\infty}\left(e^{-t / R C}-e^{-2 t / R C}\right) d t \\
& E_{C}=\frac{E^{2}}{R}\left[\frac{e^{-t / R C}}{-1 / R C}+\frac{e^{-2 t / R C}}{2 / R C}\right]_{0}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& E_{\mathrm{C}}=\frac{E^{2}}{R} \times \frac{R \mathrm{C}}{2} \\
& E_{\mathrm{C}}=\frac{1}{2} C E^{2}
\end{aligned}
$$

$$
\text { At } t=R C \sec , i=\frac{E}{R} e^{-1}
$$

$$
=36.8 \% \text { of the initial current }
$$

Hence, time constant $\tau=R C$ seconds.

34.2.2 Source free (RC Decaying transient)

Consider the circuit of figure 3.12. The sitch has been in position 1 for sufficient time we establish steady state conditions and at $t=0$, the switch is moved to position 2.

Before the switch is moved to position 2, the apacitor gets charged to the voltage E with the plarity as shown.

The equation of the circuit is

$$
i R+\frac{1}{C} \int i d t+E=0
$$

Taking Laplace transform on both sides

$$
\begin{aligned}
I(s) R+\frac{1}{C} \frac{I(s)}{s} & =\frac{-E}{s} \\
I(s)\left[R+\frac{1}{C s}\right] & =\frac{-E}{s} \\
I(s) & =\frac{-E}{s(R+1 / C s)} \\
I(s) & =\frac{-E}{R s+\frac{1}{C}} \\
I(s) & =\frac{-E}{R(s+1 / R C)}
\end{aligned}
$$

Fig. 3.13

$$
\text { Taking inverse Laplace transform, } i(t)=\frac{-E}{R} e^{-t / R C}
$$ supply. Across the capacitor is a cold cathode lamp which strikes at 60 V . Calculate time would the lamp glow?

LOTS

(AU/ Coimbatore/EEE - June 200\%)

Solution :

Case (i)

$$
e_{c}=E\left[1-e^{\frac{-t}{\tau}}\right]
$$

Here $\mathrm{e}_{\mathrm{c}}=120$ Volts, $\mathrm{E}=200$ Volts, $\mathrm{t}_{1}=5 \mathrm{sec}, \tau_{1}=\mathrm{R}_{1} \mathrm{C}$
Substituting the values, we get

$$
\begin{aligned}
120 & =200\left[1-e^{\frac{-5}{\tau_{1}}}\right] \\
\therefore e^{\frac{-5}{\tau_{1}}} & =0.4 \\
\frac{-5}{\tau_{1}} & =\log 0.4=\ln 0.4=0.916 \\
\therefore \tau_{1} & =\frac{5}{0.916}=5.4 \mathrm{sec} \\
R_{1} & =\frac{\tau_{1}}{C}=\frac{5.4}{2 \times 10^{-6}} \\
R_{1} & =2.7 \times 10^{6} \Omega=2.7 \mathrm{M} \Omega
\end{aligned}
$$

Case (ii)
Here, $\quad R_{2}=5 M \Omega$

$$
\tau_{2}=R_{2} C=5 \times 10^{6} \times 2 \times 10^{-6}=10 \text { seconds }
$$

Substituting in equation (1)

$$
\begin{gathered}
120=200\left[1-e^{-\frac{t_{2}}{\tau_{2}}}\right] \\
e^{-\frac{t_{2}}{\tau_{2}}}=0.4
\end{gathered}
$$

$$
\begin{aligned}
\frac{-t_{2}}{\tau_{2}} & =\ln 0.4=-0.916 \\
t_{2} & =0.916 \times \tau_{2} \\
t_{2} & =0.916 \times 10 \\
t_{2} & =9.16 \text { seconds }
\end{aligned}
$$

\triangle AMPLE 25: The $20 \mu F$ capacitor in circuit of figure has an initial charge $0=0.001$ coulomb as shown. The switch is closed at $t=0$. Find the transient current.

Solution :

The differential equation of the circuit is given by

$$
\begin{aligned}
& 100 i+\frac{1}{C} \int i d t-\frac{Q_{0}}{C}=50 \\
& 100 i+\frac{1}{C} \int i d t=50+\frac{0.001}{20 \times 10^{-6}} \\
& 100 i+\frac{1}{C} \int i d t=100
\end{aligned}
$$

Take Laplace transform on both sides

$$
\begin{aligned}
100 I(s)+\frac{1}{C} \frac{I(s)}{s} & =\frac{100}{s} \\
I(s)\left[100+\frac{1}{C s}\right] & =\frac{100}{s} \\
I(s) & =\frac{100}{s(100+1 / C s)} \\
I(s) & =\frac{100}{(100 s+1 / C)} \\
I(s) & =\frac{100}{100(s+1 / 100 C)} \\
I(s) & =\frac{1}{s+\frac{1}{100 C}}
\end{aligned}
$$

Taking inverse Laplace transform $i(t)=e^{(-1 / 100 C) t}$
Substituting

$$
c=20 \mu \mathrm{~F}
$$

we get,

$$
i(t)=e^{-500 t}
$$

EXAMPLE 26: In the circuit shown in figure, find the time when the voltage a capacitor becomes 25 V , after the switch is closed at $t=0$.

HOTS

Solution :

Applying $K V L$,

$$
20 i(t)+\frac{1}{10^{-6}} \int_{0}^{t} i(t) d t=100
$$

Taking Laplace transform on both sides,

$$
20 I(s)+10^{6} \frac{I(s)}{s}=\frac{100}{s}
$$

$20 s I(s)+10^{6} I(s)=100$

$$
\begin{aligned}
I(s)\left[20 s+10^{6}\right] & =100 \\
I(s) & =\frac{100}{20 s+10^{6}} \\
I(s) & =\frac{100}{10^{6}\left(\frac{20}{10^{6}} s+1\right)} \\
I(s) & =\frac{100 \times 10^{-6}}{20 \times 10^{-6}\left(s+\frac{1}{20 \times 10^{-6}}\right)} \\
I(s) & =\frac{5}{s+50000}
\end{aligned}
$$

Taking inverse Laplace transform

Voltage across the res

$$
\begin{array}{r}
i(t)=5 e^{-50000 t} \\
e_{R}=20 \times 5 e^{-50000 t} \\
e_{R}=100 e^{-50000 t}
\end{array}
$$

Voltage across the capacitor $e_{C}=E-e_{R}$

$$
\begin{aligned}
& e_{c}=100-100 e^{-50000 t} \\
& e_{c}=100\left(1-e^{-50000 t}\right)
\end{aligned}
$$

Given $\quad e_{c}=25 \mathrm{~V}$

$$
25=100\left(1-e^{-50000 t}\right)
$$

Hence,

$$
t=5.75 \mu \mathrm{~s}
$$

XAMIPLE 27: A series $R C$ circuit consists of a resistor of 10Ω and a capacitor of 0.1 as shown in figure. A constant voltage of 20 V is applied to the circuit at $t=0$. Obtain eur

(AU/EEE - Dec 2005, May 2004)

Solution:

By applying $K V L$, we get

$$
10 i+\frac{1}{0.1} \int i d t=20
$$

${ }^{\text {Taking Laplace transform on both sides, }}$

$$
\begin{aligned}
& 10 I(s)+\frac{1}{0.1} \frac{I(s)}{s}=\frac{20}{s} \\
& I(s)\left[10+\frac{1}{0.1 s}\right]=\frac{20}{s}
\end{aligned}
$$

or $i+\int i d t=2$
$I(s)+\frac{1}{s} I(s)=\frac{2}{s}$
$(s+1) I(s)=2$
$\therefore I(s)=\frac{2}{s+1}$

$$
\begin{aligned}
& I(s)=\frac{20}{\frac{(s+1)}{0.1 s}} \\
& I(s)=\frac{2}{(s+1)}
\end{aligned}
$$

Taking inverse Laplace transform,

$$
i(t)=2 e^{-t}
$$

Voltage across the resistor $e_{R}=i R=2 e^{-t} \times 10$

$$
e_{R}=20 e^{-t} \text { volts }
$$

Voltage across the capacitor $e_{c}=E-e_{R}$

$$
\begin{aligned}
& e_{c}=20-20 e^{-t} \\
& \left.e_{c}=\mathbf{2 0 (1 - e ^ { - t }}\right) \mathbf{V}
\end{aligned}
$$

EXAMPLE 28: In the circuit of figure, the switch s is in position 1 till steady state conditions are reached and then moved to 2. Find the energy dissipated in the two resistors. Show that this is equal to the energy stored in the capacitor before moving the switch.

HOTS

Solution :

When steady state conditions have been reached in position 1 , the capacitor has ${ }^{\text {a }}$ voltage of 100 V across it. On moving the switch to 2 , the equation for the circuit is

$$
500 i+\frac{1}{C} \int i d t=100
$$

Taking Laplace transform on both sides

$$
\begin{gathered}
500 I(s)+\frac{I(s)}{C s}=\frac{100}{s} \\
I(s)\left[500+\frac{1}{C s}\right]=\frac{100}{s}
\end{gathered}
$$

