3.3.4 Impulse input signal

Figure 3.4 shows the impulse signal.

Practical
Fig. 3.4
The impulse function is zero for all t not equal to 0 and it is infinity at $t=0$ rises to infinity at $t=0^{-}$and comes back to zero at $t=0^{+}$enclosing a finite area. If area is A, it is called as an impulse function of strength A. If $A=1$. Then it is calle unit impulse function.

Mathematically it is denoted as

$$
r(t)= \begin{cases}\infty & \text { for } t=0 \\ 0 & \text { for } t \neq 0\end{cases}
$$

Laplace transform of impulse function is unity.

3.4 TRANSIENT RESPONSE

Learning Objective (LO 4)

- Students will be able to analyze the transient response of $R L, R C$ an RLC circuit.

Steady state

A circuit having constant sources is said to be in steady state if the currents a voltages do not change with time. Thus, circuits with currents and voltages havi constant amplitude and constant frequency sinusoidal functions are also considered be in a steady state. That means, the amplitude and frequency of a sinusoidal sigy never change in a steady state circuit.

Transient state

In a network containing energy storage elements, with change in excitation, currents and voltages change from one state to another state. The behaviou of voltage and current when it is changed from one state to other state is called transient state.
nansient time thate is called the transient time
vatural and Forced responses
When we consider a circuit containing storage elements, which are independent of the source, the response depends upon the nature of the response. It depends upon the type of elements, of the circuit and is called the natural response is independent of the source. A nats their size and the their connection. This it approaches zero as time becomes infinit. ransient response.

When we consider sources acting on a circuit, the response depends on the nature of the source or sources. This response is called forced response

The complete response of a circuit consists of two parts. The forced response and the transient response. When we consider a differential equation, the complete solution consists of two parts; the complementary function and the particular integral. The complementary function dies out after short interval, and is referred to as the transient response or source free response. The particular integral is the steady state response (or) the forced response. The first step in finding the complete solution of a circuit is to form a differential equation for the circuit. After forming the differential equation, several methods can be used to find out the complete solution.

3.4.1 Transient response of RL circuit

3.4.1.1 Step input

An $R L$ circuit shown in figure 3.5 is connected to a battery through a switch S. Assume that the switch is closed at time $t=0$ and also assume that at the time of switching, the current is zero.

Applying $K V L$ for the loop $E=e_{R}+e_{L}$
Voltage across the resistor $e_{R}=i R$

Fig. 3.5

Voltage across the inductor $e_{L}=L \frac{d i}{d t}$

$$
\begin{equation*}
E=i R+L \frac{d i}{d t} \tag{1}
\end{equation*}
$$

This differential equation may be solved by using Laplace transformation technique. aplace transforms on both sides of the equation

$$
\begin{equation*}
R I(s)+L[s I(s)-i(0)]=\frac{E}{s} \tag{2}
\end{equation*}
$$

We know that just before closing the switch, the current $i(0)=0$
\therefore Equation (2) reduces to

$$
\begin{aligned}
& R I(s)+L s I(s) & =\frac{E}{s} \\
\text { or } & I(s)[R+s L] & =\frac{E}{s} \\
\text { i.e., } & I(s) & =\frac{E}{s(R+s L)} \\
\text { Yet } & \frac{E}{s(R+s L)} & =\frac{A}{s}+\frac{B}{R+s L} \text { (say) } \\
& \therefore E & =A(R+s L)+B s
\end{aligned}
$$

Put $s=0$

$$
E=A R \Rightarrow A=\frac{E}{R}
$$

Put $s=\frac{-R}{L}$

$$
\begin{aligned}
E & =\frac{-B R}{L} \quad ; \quad B=\frac{-E L}{R} \\
I(s) & =\frac{E / R}{s}-\frac{E L / R}{R+s L} \\
I(s) & =\frac{E}{R s}-\frac{E L}{R(R+s L)} \\
I(s) & =\frac{E}{R s}-\frac{E L}{R L[s+R / L]}=\frac{E}{R s}-\frac{E}{R(s+R / L)}
\end{aligned}
$$

Taking inverse Laplace transform on both sides

$$
\begin{array}{llrl}
& L^{-1}[I(s)] & =\frac{E}{R} L^{-1}(1 / s)-\frac{E}{R} L^{-1}\left(\frac{1}{s+R / L}\right) \\
\therefore & & i(t) & =\frac{E}{R}-\frac{E}{R} e^{-\frac{R}{L} t} \\
& \text { or } & i(t)=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)
\end{array}
$$

The current is said to rise exponentially. The final value of the current mer obtained by substituting $t=\infty$ in the equation for $i(t)$.

$$
\left.i(t)\right|_{t=\infty}=\frac{E}{R}
$$

Figure 3.6 shows the transition period during which the current varies from zero othe steady state value. To determine the current at any time t_{1}, after the switch has closed, we have to substitute $t=t_{1}$ in the equation
Consider $t=\tau=L / R$
$\left.i(t)\right|_{t=\frac{L}{R}}=\frac{E}{R}\left(1-e^{-\frac{R}{L} \times \frac{L}{R}}\right)$

Fig. 3.6

$$
=\frac{E}{R}\left(1-e^{-1}\right) \quad\left(e^{-1}=0.3678\right)
$$

$$
=0.632 \frac{E}{R}
$$

$=63.2 \%$ of the steady state (or) final value
Therefore, the time constant of an $R L$ series circuit is defined as the time during which the current increases to 63.2% of its steady state value.

The transient voltage across the resistance \quad Note: Time constant $=\frac{L}{R}$

$$
\begin{aligned}
& e_{R}=i R \\
& e_{R}=\frac{E}{R}\left(1-e^{\frac{-R}{L} t}\right) R \\
& e_{R}=E\left(1-e^{-\frac{R}{L} t}\right)
\end{aligned}
$$

he transient voltage across the inductor

$$
\begin{aligned}
& e_{L}=L \frac{d i}{d t} \\
& e_{L}=L \frac{d}{d t}\left(\frac{E}{R}\left(1-e^{\frac{-R}{L} t}\right)\right) \\
& e_{L}=\frac{E}{R} L \frac{d}{d t}\left(1-e^{-\frac{R}{L} t}\right) \\
& e_{L}=\frac{E L}{R}\left[-e^{\frac{-R}{L} t}\left(\frac{-R}{L}\right)\right] \\
& e_{L}=E e^{-\frac{R}{L} t}
\end{aligned}
$$

(AMPLE 7: A D.C voltage of 100 volts is applied to a series RL circuit with $R=25 \Omega$. What will be the current in the circuit at twice the time constant?

1,015

solution:

Time constant $\tau=\frac{L}{R}$

$$
i(t)=\frac{E}{R}\left(1-e^{-\frac{t}{\tau}}\right)
$$

Given $t=2 \tau$

$$
\begin{gathered}
i(t)=\frac{100}{25}\left(1-e^{-\frac{2 \tau}{\tau}}\right) \\
i(t)=4\left(1-e^{-2}\right) \\
i(t)=4(1-0.1353) \\
i(\boldsymbol{t})=3.45 \mathbf{A}
\end{gathered}
$$

EXAMPLE 8: In the circuit shown in figure, find the expression for transient current after the switch is closed at $t=0$, assuming zero initial conditions.

HOTS

Solution :

Applying Kirchhoff's voltage law for the loop,

$$
2 i(t)+5 \frac{d i(t)}{d t}=20
$$

Taking Laplace transform on both sides,

$$
2 I(s)+5(s I(s)-i(0))=\frac{20}{s}
$$

Given $i(0)=0$

$$
\begin{aligned}
\Rightarrow 2 I(s)+5 s I(s) & =\frac{20}{s} \\
I(s)[2+5 s] & =\frac{20}{s} \\
I(s) & =\frac{20}{s(5 s+2)} \\
I(s) & =\frac{4}{s(s+0.4)}
\end{aligned}
$$

Taking partial fractions

$$
\begin{gathered}
\frac{4}{s(s+0.4)}=\frac{A}{s}+\frac{B}{s+0.4}=\frac{10}{s}-\frac{10}{s+0.4} \\
I(s)= \\
\frac{10}{s}-\frac{10}{s+0.4}
\end{gathered}
$$

Taking inverse Laplace transform

$$
\begin{array}{r}
L^{-1}[I(s)]=10 L^{-1}\left(\frac{1}{s}\right)-10 L^{-1}\left(\frac{1}{s+0.4}\right) \\
\\
i(t)=\mathbf{1 0}-\mathbf{1 0} \boldsymbol{e}^{-\mathbf{0 . 4 t}}
\end{array}
$$

EXAMPLE 9: In the circuit shown in figure, find the transient current and the int rate of growth of current when the switch is closed at $t=0$.

HOTS

Solution :

Applying Kirchhoff's voltage law for the loop,

$$
8 i(t)+2 \frac{d i(t)}{d t}=40 \text { or } 4 i(t)+\frac{d i(t)}{d t}=20
$$

Taking Laplace transform on both sides,

$$
\begin{aligned}
& 8 I(s)+2[s I(s)-i(0)]=\frac{40}{s} \\
& \text { aditions }
\end{aligned}
$$

Assuming zero initial conditions,

$$
\begin{gathered}
8 I(s)+2 s I(s)=\frac{40}{s} \\
I(s)[8+2 s]=\frac{40}{s} \\
I(s)=\frac{40}{s(8+2 s)}=\frac{20}{s(s+4)}
\end{gathered}
$$

Taking partial fractions,

$$
\begin{aligned}
& \frac{20}{s(s+4)}=\frac{A}{s}+\frac{B}{s+4} \\
& 20=A(s+4)+B s
\end{aligned}
$$

Put $s=0$

$$
20=4 \mathrm{~A} \Rightarrow A=5
$$

Put $s=-4 ; 20=-4 \mathrm{~B} \Rightarrow B=-5$

$$
I(s)=\frac{5}{s}-\frac{5}{s+4}
$$

Taking inverse Laplace transform,

$\quad \boldsymbol{i}(\boldsymbol{t})$	$=\mathbf{5}-\boldsymbol{5} \boldsymbol{e}^{-4 t} \mathrm{~A}$
Rate of growth of current $\frac{d i(t)}{d t}$	$=20 e^{-4 t}$

Initial rate of growth of current $=\left.\frac{d i(t)}{d t}\right|_{t=0}$

$$
\left.\frac{d i(t)}{d t}\right|_{t=0}=20 \mathrm{~A} / \mathrm{second}
$$

EXAMPLE 10: A series $R L$ circuit with $R=30 \Omega$ and $L=15 \mathrm{H}$ has a constant $E=60 \mathrm{~V}$ applied at $t=0$ as shown in figure. Determine the current i, the voltage resistor and the voltage across the inductor.

HOTS

(AU, Tirunelveli/EEE - June 2011) (AU, Chennai/EEE - Dec. 201
 (AU/ECE - May 2005)

Solution:

By applying $K V L$, we get

$$
\begin{array}{r}
30 i+15 \frac{d i}{d t}=60 \\
2 i+\frac{d i}{d t}=4
\end{array}
$$

Taking Laplace transform on both sides,

$$
2 I(s)+[s I(s)-i(0)]=\frac{4}{s}
$$

Assuming zero initial conditions

$$
\begin{aligned}
2 I(s)+s I(s) & =\frac{4}{s} \\
I(s)[s+2] & =\frac{4}{8} \\
I(s) & =\frac{4}{s(s+2)}
\end{aligned}
$$

Taking partial fractions,

$$
\frac{4}{s(s+2)}=\frac{A}{s}+\frac{B}{s+2} \Rightarrow A(s+2)+B s=4
$$

Put $s=-2$

$$
4=-2 \mathrm{~B} \Rightarrow B=-2
$$

Put $s=0$

$$
4=2 \mathrm{~A} \Rightarrow A=2
$$

$$
I(s)=\frac{2}{s}-\frac{2}{s+2}
$$

Taking inverse Laplace transform, we get

$$
\begin{array}{r}
L^{-1}[I(s)]=2 L^{-1}\left(\frac{1}{s}\right)-2 L^{-1}\left(\frac{1}{s+2}\right) \\
i(t)=2-2 e^{-2 t} \\
i(t)=2\left(1-e^{-2 t}\right) \boldsymbol{A}
\end{array}
$$

Voltage across resistor $=i R$
$e_{R}=2\left(1-e^{-2 t}\right) \times 30$

$$
e_{R}=60\left(1-e^{-2 t}\right) \text { volts }
$$

Voltage across inductor $e_{L}=L \frac{d i}{d t}$

$$
\begin{aligned}
& e_{L}=15 \frac{d}{d t} 2\left(1-e^{-2 t}\right) \\
& e_{L}=30 \times 2 e^{-2 t} \\
& \quad e_{\boldsymbol{L}}=\mathbf{6 0} \boldsymbol{e}^{-\mathbf{2 t} \text { volts }}
\end{aligned}
$$

EXAMPLE 11: In the circuit shown in figure, find the transient voltage across R and Lafter the switch is closed at time $t=0$. Assume the initial current through the inductor before the switch is closed is 3 A.

Solution:

Applying $K V L$,

$$
20 i(t)+5 \frac{d i(t)}{d t}=100
$$

$$
\text { i.e., } \quad 4 i(t)+\frac{d i(t)}{d t}=20
$$

Taking Laplace transform,

$$
\begin{gathered}
20 I(s)+5(s I(s)-i(0))=\frac{100}{s} \\
20 I(s)+5 s I(s)-5 \times 3=\frac{100}{s} \\
I(s)=\frac{\frac{100}{s}+15}{5 s+20}=\frac{100+15 s}{5 s(s+4)} \\
I(s)=\frac{20+3 s}{s(s+4)}
\end{gathered}
$$

Taking partial fractions,

$$
\begin{aligned}
\frac{20+3 s}{s(s+4)} & =\frac{A}{s}+\frac{B}{s+4} \\
20+3 s & =A(s+4)+B s
\end{aligned}
$$

Put $s=0$

$$
\begin{aligned}
20 & =4 \mathrm{~A} \\
A & =\frac{20}{4}=5
\end{aligned}
$$

Put $s=-4$

$$
\begin{aligned}
8 & =-4 B \\
B & =\frac{8}{-4}=-2 \\
I(s) & =\frac{5}{s}-\frac{2}{s+4}
\end{aligned}
$$

Taking inverse Laplace transform,
Voltage $\quad i(t)=5-2 e^{-4 t} A$
Voltage across the resistor $e_{R}=i R$

$$
e_{R}=20 \times\left(5-2 e^{-4 t}\right)
$$

$$
e_{R}=100-40 e^{-4 t} \text { volts }
$$

Voltage across the inductor $e_{L}=L \frac{d i}{d t}$

$$
\begin{aligned}
& e_{L}=5 \frac{d}{d t}\left(5-2 e^{-4 t}\right) \\
& e_{L}=5 \times 8 e^{-4 t}
\end{aligned}
$$

$$
e_{L}=40 e^{-4 t} \text { volts }
$$

区XAMPLE 12: In the circuit of figure, the current in the inductance is -6 amp at $t=0$. Find the expression for the transient current. Find also the initial rate of growth of current.

(AU/ECE - Dec 2005)

Solution :

$R=5 \Omega, L=3 H, i(0)=-6 \mathrm{~A}$
$V=100$ volts
The differential equation for the circuit for $t>0$ is

$$
\begin{aligned}
& R i+L \frac{d i}{d t}=100 ; i(0)=-6 \\
& 5 i+3 \frac{d i}{d t}=100
\end{aligned}
$$

Taking Laplace transforms on both sides of the equation, $5 I(s)+3[s I(s)-i(0)]=\frac{100}{s}$

$$
\begin{aligned}
5 I(s)+3[s I(s)+6] & =\frac{100}{s} \\
I(s)[5+3 s] & =\frac{100}{s}-18 \\
I(s) & =\frac{100-18 s}{s(5+3 s)}=\frac{100-18 s}{3 s(s+5 / 3)}
\end{aligned}
$$

$$
\begin{aligned}
I(s) & =\frac{\frac{100}{3}-6 s}{s(s+5 / 3)}=\frac{A}{s}+\frac{B}{(s+5 / 3)} \\
\frac{100}{3}-6 s & =A(s+5 / 3)+B s
\end{aligned}
$$

Put $s=0$

$$
\begin{aligned}
& \frac{100}{3}=A \frac{5}{3} \quad ; \quad A=\frac{300}{15}=20 \\
& \text { Put } s=\frac{-5}{3} \\
& \frac{100}{3}-6\left(\frac{-5}{3}\right)=B\left(\frac{-5}{3}\right) \\
& \frac{100}{3}+\frac{30}{3}=\frac{-5 B}{3} \\
& \frac{130}{3}=\frac{-5}{3} B \\
&-5 B=130 \\
& B=-26 \\
& I(s)=\frac{20}{s}-\frac{26}{(s+5 / 3)}
\end{aligned}
$$

Taking inverse Laplace transform on both sides

$$
i(t)=20-26 e^{-(5 / 3) t}
$$

Rate of growth $=\frac{d i}{d t}=(-26)\left(\frac{-5}{3}\right) e^{-\frac{5}{3} t}$

$$
=\frac{130}{3} e^{-\frac{5}{3} t}
$$

Initial rate of growth $=\left.\frac{d i}{d t}\right|_{t=0}=\frac{130}{3}$

