CHAPTER 3

Transient Response Analysis

3.1 LAPLACE TRANSFORM

Learning Objective (LO 1)

- Students will be able to enumerate the basic concept of Laplace transform.
 - The Laplace transform is used to solve differential equations and corresponding initial and final value problems.
 - Laplace transforms are widely used in engineering particularly when the driving function has discontinuities and appears for a short period only.
 - In circuit analysis, the input and output functions do not exist forever in time. For casual functions, the function can be defined as f(t) u(t).
 - The integral for the Laplace transform is taken with the lower limit at t = 0 in order to include the effect of any discontinuity at t = 0.
 - Consider a function f(t) which is to be continuous and defined for values of $t \ge 0$.
 - The Laplace transform is then

$$L[f(t)] = F(s) = \int_{-\infty}^{\infty} e^{-st} f(t) u(t) dt = \int_{0}^{\infty} e^{-st} dt$$

- f(t) is a continuous function for $t \ge 0$ multiplied by e^{-st} which is integrated with respect to between limits 0 and ∞ .
- The resultant function for the variable is called Laplace transform of f(t).
- Laplace transform is a function of independent variables corresponding to the complex variable in the exponent of e^{-st} .

- The complex variable s is, in general of the form $s = \sigma + j \omega$, the real and imaginary parts, respectively.
- For a function to have a Laplace transform, it must satisfy $\int_{0}^{\infty} f(t) e^{-st} dt < \infty$
- Laplace transform changes the time domain function f(t) domain function F(s).

Note

NUCLOO NOT

• If we can use these two properties jointly, we have

$$L [K_1 f_1(t) + K_2 f_2(t)] = K_1 L [f_1(t)] + K_2 L [f_2(t)]$$

$$=K_{1}F_{1}(s)+K_{2}F_{2}(s)$$

Properties of Laplace Transforms (Formulas)

1.
$$L [Af(t)] = AF(s)$$

2. $L [f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$
3. $L \left[\frac{d}{dt} f(t) \right] = sF(s) - F(0)$
4. $L \left[\frac{d^n}{dt^n} f(t) \right] = s^n F(s) - \sum_{k=1}^n s^{n-k} \left. \frac{d^{k-1} f(t)}{dt^{k-1}} \right|_{t=0}$
5. $L \left[\int f(t) dt \right] = \frac{F(s)}{s} + \frac{\left[\int f(t) dt \right]_{t=0}}{s}$
6. $L [e^{-at} f(t)] = F(s+a)$
7. $L [f(t-\alpha) u (t-\alpha)] = e^{-\alpha s} F(s); \alpha = 0$
8. $L [tf(t)] = \frac{-dF(s)}{ds}$
9. $L [t^n f(t)] = (-1)^n \frac{d^n F(s)}{ds^n} \quad n = 1, 2, 3, ...$
10. $L \left[f\left(\frac{t}{a} \right) \right] = aF(as)$

1.3	Laplace	Transform	Formulas
-----	---------	-----------	----------

ANSIL

Sl.No		
	f(t)	
1.	unit step, $u(t)$	F (s)
2.	unit impulse $\delta(t)$	$\frac{1}{s}$
3.	t	1
4.	t^{n-1}	$\frac{1}{s^2}$
4.1	$\frac{t^{n-1}}{(n-1)!} (n = 1, 2, 3)$	$\frac{1}{s^n}$
	$e^{\omega t}$	$\frac{1}{s-\omega}$
5.	$e^{-\omega t}$	$\frac{1}{s+\omega}$
6.	t ⁿ	$\frac{n!}{s^n + 1}$
7.	$te^{-\omega t}$	$\frac{1}{\left(s+\omega\right)^2}$
8.	$\frac{1}{(n-1)!}t^{n-1}e^{-\omega t}$	$\frac{1}{\left(s+a\right)^{n}}$
9.	$t^n e^{-\omega t} (n = 1, 2, 3)$	$\frac{n!}{\left(s+\omega\right)^{n+1}}$
10.	sin wt	$\frac{\omega}{s^2 + \omega^2}$
11.	cos ωt	$\frac{s}{s^2 + \omega^2}$
12.	sinh wt	$\frac{\omega}{s^2 + \omega^2}$
13.	cosh ωt	$\frac{s}{s^2 - \omega^2}$
14.	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a^2)^2+\omega^2}$

3.7

Sl.No	f(t)	F(s)
15.	$e^{\omega t} \cos \omega t$	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$
16.	$e^{at}t^n$	$\frac{n!}{\left(S+a\right)^{n+1}}$
17.	$e^{at} t^n$	$\frac{n!}{s^{n+1}}$
18.	$e^{at}\sinh\omega t$	$\frac{\omega}{\left(s-2\right)^2-\omega^2}$
19.	$e^{at} \cosh \omega t$	$\frac{s-a}{\left(s-a\right)^2-\omega^2}$

EXAMPLE 1: Find the Laplace transform of the function $f(t) = 8t^3 + 2t^2 - 8t + 16$ LOTS

Solution :

$$L (8t^{3} + 2t^{2} - 6t + 6) = 8L (t^{3}) - 2L (t^{2}) + 8L (t) + 16L (1)$$
$$= 8 \times \frac{3!}{s^{4}} + \frac{2 \times 2!}{s^{3}} - 8 \frac{1!}{s^{2}} + 16 \frac{1}{s}$$
$$= \frac{48}{s^{4}} + \frac{4}{s^{3}} - \frac{88}{s^{2}} + \frac{16}{s}$$

EXAMPLE 2: Find the Laplace transform of the function $f(t) = \sin^2 t$

Solution :

LOTS

$$L\left(\frac{1-\cos 2t}{2}\right)$$
$$L\left(\frac{1}{2}\right) - L\frac{\cos 2t}{2}$$
$$= \frac{1}{2s} - \frac{s}{2(s^2+4)} = \frac{2s^2-4}{2s(s^2+4)}$$

HOTS – Higher Order Thinking Skills

LOTS

- Lower Order Thinking Skill

17:

Find the Laplace transform of the function.

$$f(t) = 8t^4 + 10t^3 + 12e^{-3t} - 14\sin 5t + 16\cos 2t$$

LOTS

Solution :

EXAMPLE 3:

$$Lf(t) = 8L(t^{4}) - 10L(t^{3}) + 12L(e^{-3t}) - 14L(\sin 5t) + 16L\cos 2t$$
$$= \frac{8 \times 4!}{s^{5}} - \frac{10 \times 3!}{s^{4}} + \frac{12 \times 1}{s+3} - \frac{14 \times 5}{s^{2}+25} + \frac{16 - s}{s^{2}+4}$$
$$F(s) = \frac{192}{s^{5}} - \frac{60}{s^{4}} + \frac{12}{s+3} - \frac{70}{s^{2}+25} + \frac{16s}{s^{2}+4}$$

3.9

3.2 INVERSE LAPLACE TRANSFORMATION

Learning Objective (LO 2)

- Students will be able to explain the basic concept of inverse Laplace . transform.
 - Inverse Laplace transform converts frequency domain function F(s), to the ٠ time domain function f(t) as shown below.

$$L^{-1}[F(s)] = f(t) = \frac{1}{2\pi j} \int_{-j}^{+j} F(s) e^{st} ds$$

- Here, the inverse transform involves a complex integration. f(t) can be represented as a weighted integral of complex exponentials. ۲
- We will denote the transform relationship between f(t) and F(s) as

$$\int_{T}^{L} f(t) \xrightarrow{L} F(s)$$

.....

3.2.1 Inverse Laplace Transform Formulas

verse Laplace	Tanoren	f(t)	
SI.No.	F (s)	<i>u</i> (<i>t</i>)	
1.	$\frac{1}{s}$	<i>tu</i> (<i>t</i>)	
2.	$\frac{1}{s^2}$	$\delta(t)$ impulse function	
3.	1		

		THIC CIRCUIT AND
4.	$\frac{1}{s-a}$	e ^{at}
5.	$\frac{1}{s+a}$	e ^{-at}
6.	$\frac{1}{\left(s-a\right)^2}$	te ^{at}
7.	$\frac{a}{s^2 + a^2}$	sin at
8.	$\frac{s}{s^2 + a^2}$	cos at
9.	$\frac{a}{s^2 - a^2}$	sinh a t
10.	$\frac{s}{s^2 - a^2}$	$\cosh at$
11.	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!} \text{ where } n = 1, 2, 3, \dots$
12.	$\frac{n!}{s^{n+1}}$	t^n where $n = 1, 2, 3$
13.	$\frac{b}{\left(s-a\right)^2+b^2}$	$e^{at}\sin bt$
14.	$\frac{(s-a)}{\left(s-a\right)^2+b^2}$	$e^{at}\cos bt$
15.	$\frac{b}{\left(s-a\right)^2-b^2}$	$e^{at}\sinh bt$
16.	$\frac{(s-a)}{(s-a)^2 - b^2}$	$e^{at}\cosh bt$
17.	$\frac{1}{\left(s-a\right)^{n}}$	$\frac{1}{(n-1) 1} t^{n-1} \cdot e^{at}$
18	$\frac{n!}{\left(s-a\right)^{n+1}}$	$e^{at}t^n$