CHAPTER 3

Transient Response Analysis

3.1 LAPLACE TRANSFORM

Learning Objective (LO 1)

- The Laplace transform is used to solve differential equations and corresponding initial and final value problems.
- Laplace transforms are widely used in engineering particularly when the driving function has discontinuities and appears for a short period only.
- In circuit analysis, the input and output functions do not exist forever in time. For casual functions, the function can be defined as $f(t) u(t)$.
- The integral for the Laplace transform is taken with the lower limit at $t=0$ in order to include the effect of any discontinuity at $t=0$.
- Consider a function $f(t)$ which is to be continuous and defined for values of $t \geq 0$.
- The Laplace transform is then

$$
L[f(t)]=F(s)=\int_{-\infty}^{\infty} e^{-s t} f(t) u(t) d t=\int_{0}^{\infty} e^{-s t} d t
$$

- $f(t)$ is a continuous function for $t \geq 0$ multiplied by $e^{-s t}$ which is integrated with respect to between limits 0 and ∞.
- The resultant function for the variable is called Laplace transform of $f(t)$. Laplace transform is a function of independent variables corresponding to the complex variable in the exponent of $e^{-s t}$.
- The complex variable s is, in general of the form $s=\sigma+j \omega$ the real and imaginary parts, respectively.
- For a function to have a Laplace transform, it must satisfy $\int_{0}^{\infty} f(t) e^{-s t} d t<\infty$
- Laplace transform changes the time domain function $f(t)$ domain function $F(s)$.

Note

- If we can use these two properties jointly, we have

$$
\begin{aligned}
L\left[K_{1} f_{1}(t)+K_{2} f_{2}(t)\right] & =K_{1} L\left[f_{1}(t)\right]+K_{2} L\left[f_{2}(t)\right] \\
& =K_{1} F_{1}(s)+K_{2} F_{2}(s)
\end{aligned}
$$

Properties of Laplace Transforms (Formulas)

1. $L[A f(t)]=A F(s)$
2. $L\left[f_{1}(t) \pm f_{2}(t)\right]=F_{1}(s) \pm F_{2}(s)$
3. $L\left[\frac{d}{d t} f(t)\right]=s F(s)-F(0)$
4. $L\left[\frac{d^{n}}{d t^{n}} f(t)\right]=s^{n} F(s)-\left.\sum_{k=1}^{n} s^{n-k} \frac{d^{k-1} f(t)}{d t^{k-1}}\right|_{t=0}$
5. $L\left[\int f(t) d t\right]=\frac{F(s)}{s}+\frac{\left[\int f(t) d t\right]_{t=0}}{s}$
6. $L\left[e^{-a t} f(t)\right]=F(s+a)$
7. $L[f(t-\alpha) u(t-\alpha)]=e^{-\alpha s} F(s) ; \alpha=0$
8. $L[t f(t)]=\frac{-d F(s)}{d s}$
9. $L\left[t^{n} f(t)\right]=(-1)^{n} \frac{d^{n} F(s)}{d s^{n}} \quad n=1,2,3, \ldots$
10. $L\left[f\left(\frac{t}{a}\right)\right]=a F(a s)$

Sl.No		
1.	$\frac{\boldsymbol{f}(\boldsymbol{t})}{}$	
	unit step, $u(t)$	$F(s)$
2.	unit impulse $\delta(t)$	1
3.	-	1
		1
4.	t^{n-1}	s^{2}
	$\overline{(n-1)!}(n=1,2,3 \ldots)$	1.
4.1	$e^{\omega t}$	s^{n}
		1
5.	$e^{-\omega t}$	$s-\omega$
		1
		$s+\omega$
6.	t^{n}	$n!$
		$s^{n}+1$
7.	$t e^{-\omega t}$	1
		$(s+\omega)^{2}$
8.	$\frac{1}{(n-1)!} t^{n-1} e^{-\omega t}$	$\underline{1}$
		$(s+a)^{n}$
9.	$t^{n} e^{-\omega t}(n=1,2,3 \ldots)$	$\frac{n!}{}$
		$\overline{(s+\omega)^{n+1}}$
10.	$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$
	$\cos \omega t$	s
11.		$\overline{s^{2}+\omega^{2}}$
	$\sinh \omega t$	ω
12.		$s^{2}+\omega^{2}$
		$\frac{s}{2-\omega^{2}}$
13.	$\cosh \omega t$	$s^{2}-\omega^{2}$
		${ }^{\omega}$
14.	$e^{-a t} \sin \omega t$	$\left(s+a^{2}\right)^{2}+\omega^{2}$

Sl.No	$\boldsymbol{f}(\boldsymbol{t})$	$\boldsymbol{F}(\boldsymbol{s})$
15.	$e^{\omega t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
16.	$e^{a t} t^{n}$	$\frac{n!}{(S+a)^{n+1}}$
17.	$e^{a t} t^{n}$	$\frac{n!}{s^{n+1}}$
18.	$e^{a t} \sinh \omega t$	$\frac{\omega}{(s-2)^{2}-\omega^{2}}$
19.	$e^{a t} \cosh \omega t$	$\frac{s-a}{(s-a)^{2}-\omega^{2}}$

EXAMPLE 1: Find the Laplace transform of the function $\boldsymbol{f}(\boldsymbol{t})=\mathbf{8} \boldsymbol{t}^{\mathbf{3}}+\mathbf{2 t}^{\mathbf{2}}-8 t+16$

LOTS

Solution :

$$
\begin{aligned}
L\left(8 t^{3}+2 t^{2}-6 t+6\right) & =8 L\left(t^{3}\right)-2 L\left(t^{2}\right)+8 L(t)+16 L \\
& =8 \times \frac{3!}{s^{4}}+\frac{2 \times 2!}{s^{3}}-8 \frac{1!}{s^{2}}+16 \frac{1}{s} \\
& =\frac{48}{s^{4}}+\frac{4}{s^{3}}-\frac{88}{s^{2}}+\frac{16}{s}
\end{aligned}
$$

EXAMPLE 2: Find the Laplace transform of the function $f(t)=\sin ^{2} t$

LOTS

Solution :

$$
\begin{gathered}
L\left(\frac{1-\cos 2 t}{2}\right) \\
L\left(\frac{1}{2}\right)-L \frac{\cos 2 t}{2} \\
=\frac{1}{2 s}-\frac{s}{2\left(s^{2}+4\right)}=\frac{2 s^{2}-4}{2 s\left(s^{2}+4\right)}
\end{gathered}
$$

AMPLE 3: Find the Laplace transform of the function.

$$
f(t)=8 t^{4}+10 t^{3}+12 e^{-3 t}-14 \sin 5 t+16 \cos 2 t
$$

$$
\begin{aligned}
L f(t) & =8 L\left(t^{4}\right)-10 L\left(t^{3}\right)+12 L\left(e^{-3 t}\right)-14 L(\sin 5 t)+16 L \cos 2 t \\
& =\frac{8 \times 4!}{s^{5}}-\frac{10 \times 3!}{s^{4}}+\frac{12 \times 1}{s+3}-\frac{14 \times 5}{s^{2}+25}+\frac{16-s}{s^{2}+4} \\
F(s) & =\frac{192}{s^{5}}-\frac{60}{s^{4}}+\frac{12}{s+3}-\frac{70}{s^{2}+25}+\frac{16 s}{s^{2}+4}
\end{aligned}
$$

3.2 INVERSE LAPLACE TRANSFORMATION

Learning Objective (LO 2)

- Students will be able to explain the basic concept of inverse Laplace transform.
- Inverse Laplace transform converts frequency domain function $F(s)$, to the time domain function $f(t)$ as shown below.

$$
L^{-1}[F(s)]=f(t)=\frac{1}{2 \pi j} \int_{-j}^{+j} F(s) e^{s t} d s
$$

- Here, the inverse transform involves a complex integration. $f(t)$ can be represented as a weighted integral of complex exponentials.
- We will denote the transform relationship between $f(t)$ and $F(s)$ as

$$
f(t) \xrightarrow{L} F(s)
$$

3.2.1 Inverse Laplace Transform Formulas
Inverse Laplace Transform Formulas

Sl.No.	$\boldsymbol{F}(\boldsymbol{s})$	$\boldsymbol{f}(\boldsymbol{t})$
1.	$\frac{1}{s}$	$u(t)$
2.	$\frac{1}{2}$	$t u(t)$
3.	1	$\delta(t)$ impulse function

4.	$\frac{1}{s-a}$	$e^{a t}$
5.	$\frac{1}{s+a}$	$e^{-a t}$
6.	$\frac{1}{(s-a)^{2}}$	$t e^{a t}$
7.	$\frac{a}{s^{2}+a^{2}}$	$\sin a t$
8.	$\frac{s}{s^{2}+a^{2}}$	$\cos a t$
9.	$\frac{a}{s^{2}-a^{2}}$	$\sinh a t$
10.	$\frac{s}{s^{2}-a^{2}}$	$\cosh a t$
11.	$\frac{1}{s^{n}}$	$\frac{t^{n-1}}{(n-1)!}$ where $n=1,2,3, \ldots$
12.	$\frac{n!}{s^{n+1}}$	t^{n} where $n=1,2,3 \ldots$
13.	$\frac{b}{(s-a)^{2}+b^{2}}$	$e^{a t} \sin b t$
14.	$\frac{(s-a)}{(s-a)^{2}+b^{2}}$	$e^{a t} \cos b t$
15.	$\frac{b}{(s-a)^{2}-b^{2}}$	$e^{a t} \sinh b t$
16.	$\frac{(s-a)}{(s-a)^{2}-b^{2}}$	$e^{a t} \cosh b t$
17.	$\frac{1}{(s-a)^{n}}$	$\frac{1}{(n-1) 1} t^{n-1} \cdot e^{a t}$
18	$\frac{n!}{(s-a)^{n+1}}$	$e^{a t} t^{n}$

