EXAMPLE 25: A coil of resistance 40Ω and inductance 0.75 H forms part of a series circuit for which the resonant frequency is 55 Hz . If the supply voltage is $250 \mathrm{~V}, 50 \mathrm{~Hz}$ find, (i) the line current (ii) power factor (iii) voltage across the coil.

(AU, Coimbatore/EEE - June 2009)

HOTS

Solution :

First find the capacitor value

$$
\begin{aligned}
& f_{r}=\frac{1}{2 \pi \sqrt{L C}} \\
& C=\frac{1}{\left(2 \pi f_{r}\right)^{2} L}=\frac{1}{(2 \pi \times 55)^{2} \times 0.75}
\end{aligned}
$$

$$
C=11.16 \mu \mathbf{F}
$$

$$
X_{L}=2 \pi f L=2 \pi \times 50 \times 0.75=235.62 \Omega
$$

$$
X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 50 \times 11.16 \times 10^{-6}}=285.22 \Omega
$$

Impedance $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{40^{2}+(235.62-285.22)^{2}}=63.71 \Omega$
(i) Current (I)

$$
\begin{gathered}
I=\frac{V}{Z}=\frac{250}{63.71}=3.92 \mathrm{~A} \\
I=3.92 \mathrm{~A}
\end{gathered}
$$

(ii) Power factor $(\cos \phi)$

$$
\begin{aligned}
& \cos \phi=\frac{R}{Z}=\frac{40}{63.71}=0.627 \\
& \cos \phi=0.627 \text { (leading) }
\end{aligned}
$$

(iii) Voltage across the coil $\left(\mathrm{V}_{\text {coil }}\right)$

Impedance of the coil $Z_{\text {coil }}=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{40^{2}+235.62^{2}}=239 \Omega$

$$
\begin{aligned}
V_{\text {coil }}=I Z_{\text {coil }}= & 3.92 \times 239=936.88 \mathrm{~V} \\
& V_{\text {coil }}=936.88 \mathrm{~V}
\end{aligned}
$$

AMPLE 26: A series RLC circuit has n applied roltage is 100 V . Find (i) resonant frequenry $\mathrm{A}=0.54 \mathrm{H}$ and $\mathrm{C}=40 \mathrm{p} \mathrm{F}$. The (4) lower half power frequencies (v) bandwidth (vency (it) quality forfor (tii) upper of half power points (viii) voltage actase inductance entrent at reshmanro (vii) eurront 1F17:

Solution :
(i) Resonant frequency $\left(f_{r}\right)$

$$
f_{r}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{0.54 \times 40 \times 10^{-6}}}
$$

$$
f_{r}=34.24 \mathrm{~Hz}
$$

(ii) Quality factor (Q)

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{10} \sqrt{\frac{0.54}{40 \times 10^{-6}}}
$$

$$
Q=11.62
$$

(iii) Upper half power frequency $\left(f_{2}\right)$

$$
\begin{array}{r}
f_{2}=f_{r}+\frac{R}{4 \pi L}=34.24+\frac{10}{4 \pi \times 0.54} \\
f_{2}=35.71 \mathrm{~Hz}
\end{array}
$$

(iv) Lower half power frequency $\left(f_{1}\right)$

$$
\begin{gathered}
f_{1}=f_{r}-\frac{R}{4 \pi L}=34.24-\frac{10}{4 \pi \times 0.54} \\
f_{\mathbf{1}}=\mathbf{3 2 . 7 6 ~ H z}
\end{gathered}
$$

(v) Bandwidth (BW)

$$
\begin{gathered}
B W=f_{2}-f_{1}=35.71-32.76 \\
\boldsymbol{B W}=\mathbf{2 . 9 5} \mathbf{~ H z}
\end{gathered}
$$

(vi) Current at resonance (I)

$$
\begin{gathered}
I=\frac{V}{R}=\frac{100}{10}=10 \mathrm{~A} \\
I=10 \mathrm{~A}
\end{gathered}
$$

(vii) Current at half-power points

$$
I=0.707 I_{m}=0.707 \times 10=7.07 \mathrm{~A}
$$

(viii) Voltage across inductance at resonance $\left(\boldsymbol{V}_{\boldsymbol{L}}\right)$

Inductive reactance $X_{L}=2 \pi f_{r} L=2 \pi \times 34.24 \times 0.54=116.17 \Omega$

$$
V_{L}=I X_{L}=10 \times 116.17=1161.7 \mathrm{~V}
$$

$$
V_{L}=1161.7 \mathrm{~V}
$$

EXAMPLE 27: For the given circuit of figure, find the impedance
(i) At resonant frequency
(ii) 20 Hz above resonant frequency and 20 Hz below resonant frequency
(iii) Quality factor of the coil

Solution :

Resonant frequency $f_{r}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{0.1 \times 10 \times 10^{-6}}}=159.15 \mathrm{~Hz}$
Impedance at resonance $=R=10 \Omega$
At 20 Hz below $f_{r}=159.15-20=139.15 \mathrm{~Hz}$
At 20 Hz above $f_{r}=159.15+20=179.15 \mathrm{~Hz}$
Capacitive reactance at 139.15 Hz is

$$
X_{C_{1}}=\frac{1}{2 \pi f_{1} C}=\frac{1}{2 \pi \times 139.15 \times 10 \times 10^{-6}}=114.37 \Omega
$$

Inductive reactance at $139.15 \mathrm{~Hz}, X_{L_{1}}=2 \pi f_{1} L=2 \pi \times 139.15 \times 0.1=87.43 \Omega$ Impedance at $139.15 \mathrm{~Hz}, Z_{1}=\sqrt{R^{2}+\left(X_{L_{1}}-X_{C_{1}}\right)^{2}}=\sqrt{10^{2}+(87.43-114.37)^{2}}$

$$
Z_{1}=28.736 \Omega
$$

Capacitive reactance at $179.15 \mathrm{~Hz}, X_{C_{2}}$

$$
X_{C_{2}}=\frac{1}{2 \pi f_{2} C}=\frac{1}{2 \pi \times 179.15 \times 10 \times 10^{-6}}=88.83 \Omega
$$

Inductive reactance at $179.15 \mathrm{~Hz}, X_{L_{2}}$

$$
X_{L_{2}}=2 \pi f_{2} L=2 \pi \times 179.15 \times 0.1=112.56 \Omega
$$

Impedance at $179.15 \mathrm{~Hz}, Z_{2}=\sqrt{R^{2}+\left(X_{L_{2}}-X_{C_{2}}\right)^{2}}=\sqrt{10^{2}+(112.56-88.83)^{2}}$

$$
Z_{2}=25.75 \Omega
$$

(AMPLE 28: A series RLC circuit with $R=10 \Omega, L=0.2 \mathrm{mH}$ and a variable capacitor has to resonate at 200 kHz . Find the value of C at resonance.
(AU, Trichy/ECE - Dec 2008)

Solution:

Inductive reactance $X_{L}=2 \pi f_{r} L$

$$
=2 \pi \times 200 \times 10^{3} \times 0.2 \times 10^{-3}=251.32 \Omega
$$

At resonance condition, capacitance reactance is equal to inductive reactance i.e.

$$
\begin{aligned}
X_{C} & =X_{L}=251.32 \Omega \\
X_{C} & =\frac{1}{2 \pi f_{r} C} \\
251.32 & =\frac{1}{2 \pi \times 200 \times 10^{3} \times C} \\
C & =0.0031 \mu \mathrm{~F}
\end{aligned}
$$

EXAMPLE 29: A voltage $v(\mathrm{t})=50 \sin \omega t$ is applied to a series RLC circuit. At the resonant frequency, the maximum voltage across the capacitor is found to be 400 V . If the bandwidth offered by the circuit is $500 \mathrm{rad} / \mathrm{s}$ and the impedance at resonance is 100Ω, find (i) the resonant frequency (ii) half power frequencies (iii) quality factor at resonance (iv) the component values.

Hors

(AU, Chennai/EEE - May 2011), (AU, Trichy/ECE - Dec 2008)

Solution:

Bandwidth $=500 \mathrm{rad} /$ second
Impedance at resonance, $R=100 \Omega$

Supply voltage $V=\frac{V_{m}}{\sqrt{2}}=\frac{50}{\sqrt{2}}=35.35 \mathrm{~V}$
Maximum current corresponds to resonant condition

$$
\begin{gathered}
I_{\max }=\frac{V}{R}=\frac{35.35}{100}=0.3535 \mathrm{~A} \\
B W=f_{2}-f_{1}=\frac{R}{2 \pi L} \\
500=\frac{100}{2 \pi L} \\
L=31.83 \mathrm{mH}
\end{gathered}
$$

At resonance condition, voltage across the capacitor $V_{C}=400 \mathrm{~V}$

$$
V_{C}=I X_{L}
$$

$$
\begin{aligned}
& X_{L}=\frac{V_{L}}{I}=\frac{400}{0.3535}=1131.54 \Omega \\
& X_{L}=2 \pi f_{r} L \\
& f_{r}=\frac{X_{L}}{2 \pi L}=\frac{1131.54}{2 \pi \times 31.83 \times 10^{-3}}
\end{aligned}
$$

$$
f_{r}=5657.87 \mathrm{~Hz}
$$

Half power frequencies

$$
\begin{array}{r}
f_{1}=f_{r}-\frac{R}{4 \pi L}=5657.87-\frac{100}{4 \pi \times 31.83 \times 10^{-3}} \\
f_{\mathbf{1}}=5407.86 \mathrm{~Hz} \\
f_{2}=f_{r}+\frac{R}{4 \pi L}=5657.87+\frac{100}{4 \pi \times 31.83 \times 10^{-3}} \\
f_{\mathbf{2}}=5907.87 \mathrm{~Hz} \\
Q \text { - factor }=\frac{f_{r}}{B W}=\frac{5657.87}{500}=11.31 \\
\boldsymbol{Q}=\mathbf{1 1 . 3 1}
\end{array}
$$

Components values

$$
\begin{aligned}
& \mathrm{R}=100 \Omega \\
& L=31.8 \mathrm{mH}
\end{aligned}
$$

Capacitive reactance $X_{C}=X_{L}=1131.54 \Omega$

$$
X_{C}=\frac{1}{2 \pi f_{r} C}
$$

$$
1131.54=\frac{1}{2 \pi \times 5657.87 \times C}
$$

$$
C=0.0248 \mu \mathrm{~F}
$$

XAMPLE 30: A series circuit with $R=10 \Omega, L=0.1 \mathrm{H}$ and $\mathrm{C}=50 \mu \mathrm{~F}$ has an applied
$V=50 \angle 0^{\circ}$ with a variable frequency. Find the resonant frequency, the value of froquency at which maximum voltage occurs across the inductor and the value of frequency at which maximum voltage occurs across the capacitor. Explain what do you infer from the results.

HOTS

Solution :

The frequency at which maximum voltage occurs across the inductor is

$$
\begin{aligned}
& f_{L}=\frac{1}{2 \pi \sqrt{L C}} \sqrt{\frac{1}{\left(1-\frac{R^{2} C}{2 L}\right)}} \\
&=\frac{1}{2 \pi \sqrt{0.1 \times 50 \times 10^{-6}}} \sqrt{\frac{1}{1-\left(\frac{10^{2} \times 50 \times 10^{-6}}{2 \times 0.1}\right.}} \\
& f_{L}=72.08 \mathrm{~Hz}
\end{aligned}
$$

The frequency at which maximum voltage occurs across the capacitor is

$$
\begin{aligned}
f_{C} & =\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{2 L}} \\
& =\frac{1}{2 \pi} \sqrt{\frac{1}{0.1 \times 50 \times 10^{-6}}-\frac{10^{2}}{2 \times 0.1}}
\end{aligned}
$$

$$
f_{C}=71.08 \mathrm{~Hz}
$$

Resonant frequency $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$

$$
=\frac{1}{2 \pi \sqrt{0.1 \times 50 \times 10^{-6}}}=71.18 \mathrm{~Hz}
$$

$$
f_{r}=71.18 \mathrm{~Hz}
$$

From the above results, it is clear that the maximum voltage across the capacitor occurs below the resonant frequency and the maximum inductor voltage occurs above the resonant frequency.

4.2 RESONANCE IN PARALLEL A.C. CIRCUITS

Learning Objective (LO 2)

- Students will be able to analyze the resonance in parallel AC circuits with resonant frequency, bandwidth, Q factor and half power frequencies invovled in it.

Let us consider a parallel circuit consisting of two branches as shown in the figure 4.8. The impedance of branch $1=R_{L}+j X_{L}$

The impedance of branch $2=R_{C}-j X_{C}$
The admittance of the circuit is

$$
\begin{aligned}
& Y=\frac{1}{Z} \text { gives } \\
& Y=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}
\end{aligned}
$$

Fig. 4.8

$$
Y=\frac{1}{R_{L}+j X_{L}}+\frac{1}{R_{C}-j X_{C}}
$$

$$
Y=\frac{R_{L}-j X_{L}}{\left(R_{L}+j X_{L}\right)\left(R_{L}-j X_{L}\right)}+\frac{R_{C}+j X_{C}}{\left(R_{C}+j X_{C}\right)\left(R_{C}-j X_{C}\right)}
$$

$$
Y=\frac{R_{L}-j X_{L}}{R_{L}^{2}+X_{L}^{2}}+\frac{R_{C}+j X_{C}}{R_{C}^{2}+X_{C}^{2}}
$$

$$
Y=\frac{R_{L}}{R_{L}^{2}+X_{L}^{2}}+\frac{R_{C}}{R_{C}^{2}+X_{C}^{2}}-j\left(\frac{X_{L}}{R_{L}^{2}+X_{L}^{2}}-\frac{X_{C}}{R_{C}^{2}+X_{C}^{2}}\right)
$$

