SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

I Semester
 B.E-Electrical and Electronics Engineering
 19EE201 - Circuit Theory
 Regulations 2019

QUESTION BANK FOR IAE III

PART A	
1	Define resonance.
2	Determine the quality factor of a coil for the series circuit consisting of $\mathrm{R}=10 \Omega$, $\mathrm{L}=0.1 \mathrm{H}, \mathrm{C}=10 \mu \mathrm{~F}$.
3	Find the value of the effective inductance of the combination.
4	Compare Self-inductance and Mutual inductance.
5	A coil of resistance 2Ω and inductance 0.01 H is connected in series with a capacitor C . If maximum current occurs at 25 Hz , find C.
6	Two inductively coupled coils have self-inductance $\mathrm{L}_{1}=50 \mathrm{mH}$ and $\mathrm{L}_{2}=200 \mathrm{mH}$. If the coefficient of coupling is 0.5 (i) Find the value of mutual inductance between the coils and (ii) What is the maximum possible mutual inductance?
7	Write the expression for transient current for series RL and RC circuits.
8	In a series RLC circuit, $\mathrm{L}=2 \mathrm{H}$ and $\mathrm{C}=5 \mu \mathrm{~F}$. Determine the value of R to give critical damping.
9	A DC voltage of 100 volts is applied to a series RL circuit with $R=25 \Omega$. What will be the current in the circuit at twice the time constant?
10	Define transient response.
11	Define Self- inductance.
12	Define time constant in RL circuit.
13	Define transient time.
14	Define resonant frequency.
15	Define quality factor.
PART B \& C	
1	A series RLC circuit with $\mathrm{R}=10 \Omega, \mathrm{~L}=10 \mathrm{mH}$ and $\mathrm{C}=1 \mu \mathrm{~F}$ has an applied voltage of 200 V at resonant frequency. Calculate the resonant frequency, the current in the circuit and voltages across the elements at resonance. Find also the quality factor and bandwidth.
2	(i) Find the value of L at which the circuit resonates at a frequency of $1000 \mathrm{rad} /$ Second in the circuit shown in fig.

