

FIG. E2.39(d)

2.7 NORTON'S THEOREM

Norton's theorem states that "any two-terminal bilateral linear circuit consisting of ene sources and impedances can be replaced with a Norton's equivalent circuit with a sin Norton current source \bar{I}_{N} in parallel with a Norton's impedance Z_{N} connected to al impedance Z_{L} ". Similar to Thevenin's theorem, Norton's theorem is also used to simpli the analysis of complex circuits.

The value of Norton's equivalent current \bar{I}_{N} can be calculated by shorting the load impedance Z_{L}. The Norton's equivalent impedance $Z_{N} \bar{V}_{S}$ is obtained by the procedure similar to that of calculating Thevenin's equivalent impedance $Z_{T h}$.

Consider the circuit shown in Fig. 2.10(a) to illustrate the application of Norton's theorem.

FIG. 2.10(a) A circuit with energy source and impedances

Step 1: To find Norton's current \bar{I}_{N}, short-circuit the load Z_{L} as shown in Fig. 2.10(b).

FIG. 2.10(b) Short-circuiting the load
As the entire current flows through the short-circuited terminals C and F and currentflows through Z_{2}, we have

$$
\bar{I}_{N}=\frac{\overline{V_{S}}}{Z_{1}}
$$

Step 2: To find Norton's equivalent impedance (Z_{N})

$$
Z_{N}=Z_{T h}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

Step 3: Norton's equivalent circuit with \bar{I}_{N}, Z_{N} and Z_{L} can be constructed as shown in Fig. $2.10(\mathrm{c})$.

FIG. 2.10(c) Norton's equivalent circuit
It is important to note that using source transformation, Thevenin's equivalent circuit can be converted into Norton equivalent and vice versa as shown in Fig. 2.10(d).

FIG. 2.10(d) Source transformation between Thevenin's equivalent circuit and Norton's equivalent circuit
If dependant sources are present in the circuit, the same procedure can be followed using Thevenin's theorem for solving problems.

Example 2.40 Find the voltage drop across the 12Ω resistance using Norton's theorem for the circuit shown in Fig. E2.40(a).

FIG. E2.40(a)
Solution
(a) To find Norton's current I_{N} :

Short the branch consisting of 12Ω resistor as shown in Fig. E2.40(b).
Since the 4Ω resistor is in parallel with a short-circuited terminal, it is removed from circuit as shown in Fig. E2.40(c).

FIG. E2.40(b)

FIG. E2.40(c)

Applying KVL to the circuit shown in Fig. E2.40(c), we get
For loop 1,
$4 I_{1}+2\left(I_{1}-I_{2}\right)=14$
i.e.,

$$
6 I_{1}-2 I_{2}=14
$$

For loop 2, $\quad 2\left(I_{2}-I_{1}\right)=4$
i.e.,

$$
-2 I_{1}+2 I_{2}=4
$$

Upon solving Eqn.(1) and(2), we get

$$
I_{N}=I_{2}=6.5 \mathrm{~A}
$$

(b) To find R_{N}.

Open-circuit the 12Ω resistor, and short-circuit the voltage source as shown in Fig. E2.40() The circuit is further simplified as shown in Fig. E2.40(e).
Therefore, $\quad R_{N}=\frac{4 \times 1.333}{4+1.333} \approx 1 \Omega$

FIG. E2.40(d)

FIG. E2.40(e)
(c) The Norton's equivalent circuit is shown in Fig. E2.40(f).

Therefore,

$$
\begin{aligned}
I_{L} & =I_{12 \Omega}=I_{N} \times \frac{R_{N}}{R_{L}+R_{N}} \\
& =6.5 \times \frac{1}{12+1}=0.5 \mathrm{~A}
\end{aligned}
$$

Voltage drop across the 12Ω load resistor $V_{L}=I_{L} R_{L}=0.5 \times 12=6 \mathrm{~V}$.
Example 2.41 Obtain the Norton's Equivalent for the circuit shown in Fig. E2.41(a).

FIG. E2.41(a)

Solution

(a) To find I_{N} :

Short-circuit the branch AB as shown in Fig. E2.41(b).

FIG. E2.41(b)

From Fig. E2.41(b), it is evident that

$$
I_{1}=5 \mathrm{~A}
$$

Applying KVL to the remaining loops, we get
For the loop DEGHD,

$$
\begin{align*}
4\left(I_{2}-I_{3}\right) & =10 \\
4 I_{2}-4 I_{3} & =10 \tag{1}
\end{align*}
$$

For the loop ABEDCA

$$
\begin{array}{r}
4\left(I_{3}-I_{2}\right)+2\left(I_{3}-I_{1}\right)=0 \\
-2 I_{1}-4 I_{2}+6 I_{3}=0 \tag{2}
\end{array}
$$

$\mathrm{U}_{\mathrm{pon}_{\text {Solving }}}-4 I_{2}+6 I_{3}=2 \times 5=10$

$$
I_{2}=12.5 \mathrm{~A} \text { and } I_{3}=10 \mathrm{~A}
$$

Therefore, $\quad I_{N}=I_{3}=10 \mathrm{~A}$
(b) To calculate R_{N} :

Open-circuit the current source and short-circuit the voltage source as shown in Fig. E2,4

FIG. E2.41(c)

From the circuit shown in Fig. E2.41(c), it is evident that the 4Ω resistor is in pars with the short circuit. Since the equivalent resistance of this parallel combination is z it can be removed.
Therefore, $\quad R_{N}=2 \Omega$
(c) The Norton's equivalent circuit is shown in Fig. E2.41(d).

FIG. E2.41(d)
Example 2.42 Determine the current through the 2Ω resistor in the circuit shown in
E2.42(a), using Norton's theorem.

Using source transformation, the current sources are converted into voltage sources as

FIG. E2.42(b)
(a) To find I_{N}.

Shor-circuit the load resistor 2Ω as shown in Fig. E2.42(c).

FIG. E2.42(c)
Applying KVL to this circuit, we get
For loop 1,

For $l_{00 p \text { 2, }} \quad 13 I_{1}-3 I_{2}-6 I_{3}=114$

For loop 3, $\quad-3 I_{1}+11 I_{2}-8 I_{3}=174$

$$
\begin{align*}
& -6 I_{1}-8 I_{2}+18 I_{3}=96-144-96 \tag{2}\\
& -6 I_{1}-8 I_{2}+18 I_{3}=-144 \tag{3}
\end{align*}
$$

Writing Eqn. (1), (2) and (3) in matrix form, we have

$$
\left|\begin{array}{ccc}
13 & -3 & -6 \\
-3 & 11 & -8 \\
-6 & -8 & 18
\end{array}\right|\left|\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right|=\left|\begin{array}{c}
114 \\
174 \\
-144
\end{array}\right|
$$

Applying Cramer's rule, we get

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
13 & -3 & -6 \\
-3 & 11 & -8 \\
-6 & -8 & 18
\end{array}\right|=896 \\
& \Delta_{2}=\left|\begin{array}{ccc}
13 & 114 & -6 \\
-3 & 174 & -8 \\
-6 & -144 & 18
\end{array}\right|=28512 \\
& I_{2}=\frac{\Delta_{2}}{\Delta}=\frac{28512}{896}=31.821 \mathrm{~A}
\end{aligned}
$$

From Fig. E2.42(c), It is evident that $I_{N}=I_{2}+8=31.821+8=39.821 \mathrm{~A}$ (b) To find R_{N} : Short-circuit the voltage sources and remove the load R_{L} as shown in Fig. E2.42(

FIG. E2.42(d)
Apply delta-to-star transformation as shown in Fig. E2.42(e).

Here, $\quad R_{1}=\frac{6 \times 4}{6+4+8}=\frac{24}{18}=\frac{4}{3} \Omega$

$$
R_{2}=\frac{8 \times 4}{6+4+8}=\frac{32}{18}=\frac{16}{9} \Omega
$$

and

$$
R_{3}=\frac{6 \times 8}{6+4+8}=\frac{48}{18}=\frac{8}{3} \Omega
$$

Therefore,

$$
\begin{aligned}
R_{N} & =R_{a b}=\left[\left(4+\frac{4}{3}\right) \|\left(\frac{8}{3}+3\right)\right]+\frac{16}{9} \\
& =\frac{5.333 \times 5.667}{5.333+5.667}+\frac{16}{9}=4.525 \Omega
\end{aligned}
$$

(c) The Norton's equivalent circuit is shown in Fig. E2.42(f).

FIG. E2.42(f)

According to the current division rule,

$$
I_{2 \Omega}=\frac{39.821 \times 4.525}{4.525+2}=27.6153 \mathrm{~A}
$$

Example 2.43 Obtain Norton's equivalent for the circuit shown in Fig. E2.43(a) across the terminal AB .

Solution

(a) To find I_{N} :

Short-circuit the load resistor R_{x} between the terminals AB, as shown in Fig. E2.43(b). Let the current flowing through the 4Ω resistor be I_{x} in the direction as shown in Fig. E2.43(b).
Applying KCL

2Ω
FIG. E2.43(a)

$-12 I=4$
FIG. E2.43(b)

