Circuit Theory

## **1.8 NODAL ANALYSIS METHOD**

A junction point in an electrical circuit is called a node. A potential drop can be measured with respect to this point and another node acting as a reference point. Generally, grounded node is taken as a reference point. If n is the number of nodes, then the number of independent KCL equations in nodal analysis is (n-1) because one node acts as a reference node.

Consider the sample circuit shown in Fig. 1.18(a).



The branch currents entering and leaving node 1 can be marked as shown in Fig. 1.18(b).



According to KCL, the currents entering the node 1 is equal to the current leaving that node. Thus,

$$I_1 = I_2 + I_3$$

According to Ohm's law,  $I_2 = \frac{V_1 - V_2}{R_2}$  and  $I_3 = \frac{V_1 - V_0}{R_3}$ 

Therefore,  $I_1 = \frac{V_1 - V_2}{R_2} + \frac{V_1 - V_0}{R_3}$  and since node 0 is grounded,  $V_0 = 0$ .

$$I_{1} = \frac{V_{1} - V_{2}}{R_{2}} + \frac{V_{1} - 0}{R_{3}}$$
$$= \frac{V_{1} - V_{2}}{R_{2}} + \frac{V_{1}}{R_{3}}$$

54





FIG. 1.18(c)

Similarly, with reference to node 2 in Fig. 1.18(c), we have

$$\frac{\frac{V_2 - V_1}{R_2} + \frac{V_2 - 0}{R_5} + \frac{V_2 - 0}{R_4} = 0}{\frac{V_2 - V_1}{R_2} + V_2 \left(\frac{1}{R_4} + \frac{1}{R_5}\right) = 0}$$

The above nodal equations for nodes 1 and 2 are used to find the voltages at each node.

# Steps involved in the nodal analysis method

- Step 1: Identify all independent nodes wherever the current branches out and select a reference node.
- Step 2: Write the nodal equation using KCL for all nodes except the reference node.
- Step 3: Nodal equations are then solved to find nodal voltages and branch currents.

**Example 1.44** Using nodal analysis, determine nodal voltages for the circuit shown in Fig. E1.44(a)



#### Solution

Step 1: Identify all nodes and assign a reference node as shown in Fig. E1.44(b).



### Step 2 Write the nodal equation using KCL.

At node 1,

$$2 = \frac{V_1}{5} + \frac{V_1 - V_2}{6}$$
$$V_1 \left[ \frac{1}{5} + \frac{1}{6} \right] - V_2 \left[ \frac{1}{6} \right] = 2$$
$$0.367V_1 - 0.167V_2 = 2$$

At node 2,

$$\frac{V_2 - V_1}{6} + \frac{V_2}{3} + \frac{V_2 - 20}{10} = 0$$
$$\frac{-V_1}{6} + V_2 \left[ \frac{1}{3} + \frac{1}{6} + \frac{1}{10} \right] - 2 = 0$$
$$-V_1 \left[ \frac{1}{6} \right] + V_2 \left[ \frac{1}{3} + \frac{1}{6} + \frac{1}{10} \right] = 2$$
$$0.167V + 0.597V = 2$$

$$-0.167V_1 + 0.597V_2 = 2$$

Step 3: Upon solving the nodal Eqn. (1) and (2), we get

 $V_1 = 7.991$  V and  $V_2 = 5.585$  V

**Example 1.45** Find the unknown voltage  $V_x$  in the circuit shown in Fig. E1.45. Assume that  $V_1 = 16$  V.



## Solution

Given  $V_1 = 16$  V, inspecting the circuit shown in Fig. E1.45, the current through the  $4\Omega$ resistor is  $V_1/4$ ,

i.e., 
$$I_{4\Omega} = \frac{16V}{4} = 4A$$

(2)

(1)

Applying KCL at node 'a', we get

$$5 = I_{4\Omega} + I_{6\Omega} = 4 + I_{6\Omega}$$

or,  $I_{6\Omega} = 5 - 4 = 1$ A

Therefore, the voltage drop across the  $6\Omega$  resistor,  $V_{ab} = 1 \times 6 = 6$  V

Applying KVL to the loop 'abcd', we get

$$V_2 = V_1 - V_{ab} = 16 - 6 = 10 \text{ V}.$$

Inspecting the circuit, it is noticed that  $V_x = V_2$ . Hence,  $V_x = 10$  V

**Example 1.46** In the circuit shown in Fig. E1.46(a), determine: (a) the open circuit voltage  $V_{a-b}$ , (b) the short-circuit current through terminals a-b, and (c) the voltage drop across 3 A current source when a-b is open-circuited.



#### Solution

- (a) Inspecting the circuit shown in Fig. E1.46(a), I = 3AHence, the voltage drop across  $5\Omega$  resistor is  $V_{5\Omega} = 3 \times 5 = 15V$ and the open-circuit voltage  $V_{a-b} = V_{xy} = 20 - V_{5\Omega} = 20 - 15 = 5V$
- (b) Short-circuiting the terminals a-b and applying KCL at node 'x', we get

$$I = I_{2\Omega} + I_{4\Omega}$$

An inspection of the circuit shown in Fig. E1.46(b) reveals that  $I = \frac{20 - V_{xy}}{5}$ ,  $I_{4\Omega} = 3$  A and since 'a' and 'b' are shorted the nodes 'a', 'b' and 'y' merge with the node 'y', so that  $I_{2\Omega} = \frac{V_{xy}}{2}$  A

Therefore,  $\frac{20 - V_{xy}}{5} = 3 + \frac{V_{xy}}{2}$ 

8 Circuit Theory

$$\frac{20 - V_{xy}}{5} = \frac{6 + V_{xy}}{2}$$

 $V_{xy} = \frac{10}{7} \mathrm{V}$ 

or,

Hence, the short-circuit current through a-b is

$$I_{2\Omega} = \frac{V_{xy}}{2} = \frac{10}{2 \times 7} = \frac{5}{7} A$$

(c) When the a-b terminal is open-circuited as shown in Fig. E1.46(a), assuming the voltage drop across 3A source is  $V_{3\Omega}$  and applying KVL to the circuit, we get

$$-20 + 5I + 4I - V_{3\Omega} = 0$$

Since 
$$I = 3$$
 A,  $-20 + 15 + 12 - V_{3\Omega} = 0$ 

Therefore,  $V_{3\Omega} = 7 \text{ V}$ 

**Example 1.47** Write the nodal equations for the circuit shown in Fig. E1.47.

#### Solution

Applying nodal analysis, we get

For node 1,



For node 2,

$$\frac{V_2 - V_1}{8} + \frac{V_2 - 4}{5} = 2$$



**Example 1.48** For the circuit shown in Fig. E1.48, using Kirchhoff's current law, find the values of the currents,  $I_1$  and  $I_2$ .



#### Solution

We know that in a parallel circuit, the voltage remains the same across all the parallel branches. According to Ohm's law,  $I_1 = \frac{V_a}{3}$ 







Solution Applying

Example

and determ

i.e.,

Applying

i.e.,

# Solving th

According

#### Solution

Inspecting the circuit reveals that a voltage source is connected between two nodes 'x' and 'y'. Hence, the combined super node equation for the nodes 'x' and 'y' can be written as

$$\frac{V_x - 5}{3} + \frac{V_x}{4} + \frac{V_y - 4}{1} + \frac{V_y}{6} = 0$$
$$V_x \left[ \frac{1}{3} + \frac{1}{4} \right] + V_y \left[ 1 + \frac{1}{6} \right] - \frac{5}{3} - 4 = 0$$
$$0.583V_x + 1.666V_y = 5.666$$

We know that  $V_x - V_y = 2$ 

Solving the above equations, we get

$$V_{z} = 4 V$$
 and  $V_{y} = 2 V$ 

The current through the 1 $\Omega$  resistor,  $I_{1\Omega}$ 

$$=\frac{V_y-4}{1}=2-4=-2A$$

and



**Example 1.51** For the given circuit shown in Fig. E1.51, write the node voltage equations and determine the currents in each branch for the given network.



#### Solution

he

Applying Kirchhoff's current law at node 1 we get

$$10 = \frac{V_1}{5} + \frac{V_1 - V_2}{4}$$

 $\frac{9}{20}V_1 - \frac{V_2}{4} = 10$ 

i.e.,

Applying KCL at node 2, we get

$$\frac{V_2 - V_1}{4} + \frac{V_2}{10} + \frac{V_2 - 5}{2} = 0$$

i.e.,

 $\frac{17}{20}V_2 - \frac{V_1}{4} = \frac{5}{2}$ 

Solving the nodal Eqn. (1) and (2), we get

$$V_2 = 11.33 \text{ V}$$
  
 $V_1 = 28.5 \text{ V}$ 

According to Ohm's law, the different branch currents are

$$I_{5} = \frac{V_{1}}{5} = \frac{28.5}{5} = 5.7 \text{ A}$$

$$I_{10} = \frac{V_{2}}{10} = \frac{11.33}{10} = 1.133 \text{ A}$$

$$I_{4} = \frac{V_{1} - V_{2}}{4} = \frac{28.5 - 11.33}{4} = 4.2925 \text{ A}$$

$$I_{2} = \frac{V_{2} - 5}{2} = \frac{11.33 - 5}{2} = 3.165 \text{ A}$$

and

**Example 1.52** For the given circuit shown in Fig. E1.52, determine the voltage ratio,  $V_{\rm p}/V_{\rm p}$  by nodal analysis.

(2)

(1)

62 Circuit Theory



ante ai parte

(1)

(2)

#### Solution

Applying KCL at node A, we get

i.e.,

$$\frac{V_A - V_I}{5} + \frac{V_A}{6} + \frac{V_A}{22} = 0$$
$$V_A \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{22}\right) = \frac{V_I}{5}$$

 $I_{10} + I_{10} + I_{20} = 0$ 

i.e.,

or,

$$V_A = 0.485 V_I$$

 $I_{12\Omega} = I_{22\Omega}$ 

As the same current flows through both the resistors  $10\Omega$  and  $12\Omega$ , we have

i.e.,

$$\frac{V_A}{22} = \frac{V_o}{12}$$
$$V_A = 1.833 \times V_o$$

Substituting Eqn. (2) in Eqn. (1), we get

$$\frac{V_o}{V_I} = \frac{0.485}{1.833} = 0.264$$

**Example 1.53** For the circuit shown in Fig. E1.53, using nodal analysis find the voltage  $V_i$  which makes the current in 10  $\Omega$  as zero.



#### Solution

Applying KCL at node 1, we get

$$\frac{V_1 - V}{4} + \frac{V_1}{2} + \frac{V_1 - V_2}{10} = 0$$
$$0.85V_1 - 0.1V_2 = \frac{V_1}{4}$$

Applying KCL at node 2, we get

$$\frac{V_2 - V_1}{10} + \frac{V_2}{6} + \frac{V_2 - 40}{8} = 0$$

$$0.39V_2 - 0.1V_1 = 5$$

Since the current through  $10\Omega$  is zero, we have

$$V_1 - V_2 = 0$$

or,

$$V_1 =$$

Substituting Eqn. (3) in Eqn. (2), we get

$$V_2 = V_1 = 17.241$$
 V

 $V_2$ 

Substituting these values in Eqn. (1), we get

$$V_i = 4 \times (0.85 - 0.1) \times 17.241 = 51.723 \text{ V}$$

(2)

(3)

10

(1)