

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 19EE201-CIRCUIT THEORY

I YEAR /I SEMESTER EEE

Unit 1: Basic Circuit Analysis

Kirchhoff's Law

KIRCHHOFF'S LAW

In 1845, a German physicist, **Gustav Kirchhoff** developed a pair or set of rules or laws which deal with the conservation of current and energy within electrical circuits.

These two rules are commonly known as: Kirchhoffs Circuit Laws with one of Kirchhoffs laws dealing with the current flowing around a closed circuit, **Kirchhoffs Current Law, (KCL)** while the other law deals with the voltage sources present in a closed circuit, **Kirchhoffs Voltage Law, (KVL)**.

KIRCHHOFF'S CURRENT LAW

The algebraic sum of ALL the currents entering and leaving a node must be

equal to zero, $I_{(exiting)} + I_{(entering)} = 0$.

Currents Entering the Node Equals Currents Leaving the Node

KIRCHHOFF'S VOLTAGE LAW

"In any closed loop network, the total voltage around the loop is equal to the sum of all the voltage drops within the same loop"

CHALLENGE

Find the current flowing in the 40 Ω Resistor, R₃

Mesh Loop Method

The current flowing in resistor R_3 is given as : -0.143 + 0.429 = 0.286 Amps voltage across the resistor R_3 is given as : $0.286 \times 40 = 11.44$ volts

YOUR CHALLENGE

Find the current flowing through 150 ohm Resistor R1

REFERENCES

- Muthusubramanian R, Salivahanan S, "Basic Electrical and Electronics Engineering", Tata McGraw Hill Publishers, (2009) - UNIT I – V
- Bhattacharya. S.K, "Basic Electrical and Electronics Engineering", Pearson Education, (2017) – UNIT I – IV
- Mehta V K, Mehta Rohit, "Principles of Electrical Engineering and Electronics",
 S.Chand & Company Ltd, (2010)- UNIT I and II
- Mehta V K, Mehta Rohit, "Principles of Electronics", S.Chand & Company Ltd, (2005)- UNIT IV and V

THANK YOU

