
19AD501 – BIG DATA ANALYTICS 

UNIT III 

Introducing Hadoop  –Hadoop Overview – RDBMS versus Hadoop  – HDFS (Hadoop  

Distributed File System): Components and Block Replication – Processing Data with Hadoop 

–  Introduction  to  MapReduce  –  Features  of  MapReduce  –  YARN, HBASE 

 

Introducing Hadoop  

Hadoop is an Apache open source framework written in java that allows distributed 

processing of large datasets across clusters of computers using simple programming models. 

A Hadoop frame-worked application works in an environment that provides distributed 

storage and computation across clusters of computers. 

 

Hadoop is designed to scale up from single server to thousands of machines, each offering 

local computation and storage. 

 

In short Hadoop is an open source software framework for sorting and processing big data 

in distributed way on large clusters of commodity hardware.  

 

Why Hadoop? 

Its capability to handle massive amounts of data, different categories of data fairly quickly. 

 

1. Low cost: It is an open source framework and uses commodity hardware to store 

enormous quantities of data. 

2. Computing Power: Hadoop is based on distributed computing model, therefore 

more number of computing nodes, the more processing power at hand. 

3. Scalability: When adding more nodes as the system grows and requires less 

administration. 

4. Storage Flexibility: Hadoop provides convenience of storing as much as data as one 

needs and also added flexibility of deciding later as to how to use the stored data. 

5. Inherent Data Protection: Hadoop protects the data and executing applications 

against hardware failure. If a node fails it automatically redirects the jobs that had 

been assigned to this node to the other functional and available nodes. 

 

 

HADOOP OVERVIEW 

Hadoop is open source software framework to store and process massive amounts of data in a 

distributed fashion on large clusters of commodity hardware. Basically, Hadoop 

accomplishes two tasks 

1. Massive data storage 

2. Faster data processing 

 

 

Key Aspects of Hadoop 

 Open source: It is free to download, use and contribute to 

 Frameworks: Means everything that you will need to develop and execute and 

application is provided programs, tool etc. 

 Distributed: Divides and stores data across multiple computers. 



Computation/processing is done in parallel across multiple connected nodes. 

 Massive Storage: Stores colossal, amount of data across nodes of low cost 

commodity hardware. 

 Faster Processing: Large amounts of data is processed in parallel, yielding quick 

response. 

 

Hadoop Core Components 

1. Hadoop Common: These are Java libraries and utilities required by other Hadoop 

modules. These libraries provide filesystem and OS level abstractions and contains 

the necessary Java files and scripts required to start Hadoop. 

2. Hadoop Distributed File System (HDFS): A distributed file system that provides 

high-throughput access to application data. 

3. Hadoop MapReduce: This is YARN-based system for parallel processing of large 

data sets. 

4. Hadoop Yet Another Resource Negotiator (YARN): This is a framework for job 

scheduling and cluster resource management. 

 
 

Hadoop Ecosystem 

Hadoop ecosystem support projects to enhance the functionality of hadoop core components. 

The Eco Projects are as follows 

1. HIVE 

2. PIG 

3. SQOOP 

4. HBASE 

5. FLUME 

6. OOZIE 

7. AMBARI 

8. MAHOUT 

9. SPARK 

10. ZOOKEEPER 

 

 

 



 
 

Hadoop Conceptual Layer 

It is conceptually divided into Data Storage Layer which stores huge volumes of data Data 

Processing Layer which processes data in parallel to extract richer and meaningful insights 

from data. 

 

High-Level Architecture of Hadoop 

Hadoop is distributed Master-Slave Architecture. Master Node is known as Name Node and 

slave nodes are known as DataNodes. 

 

Master HDFS: Its main responsibility is partitioning the data storage across the slave nodes. 

It also keeps track of locations of data on DataNodes. 

 

Master MapReduce: It decides and schedules computation task on slave nodes. 

 

Why not RDBMS? 

RDBMS is not suitable for storing and processing large files, images and videos. RDBMS is 

not a good choice when it comes to advanced analytics involving machine learning. 

 

RDBMS Versus HADOOP 

 
PARAMETERS RDBMS HADOOP 

System Relational Database 

Management System. 

Node based flat structure 

Data Suitable for structures data Suitable for structured, unstructured 

data. Supports variety of data formats 

in real time such as XML, JSON, text 

based flat file formats, etc. 

Processing OLTP Analytical, Big Data Processing 

Performance Data processing in GB’s Data Processing in PB’s 

Choice When data needs consistent 

relationship 

Big data processing, which does not 

require any consistent relationship 

between data 



Software license Proprietary Open source 

Project 

Environment  

One project with multiple 

components 

Eco System suite of java based 

projects 

Architecture Designed for client server 

architecture 

Designed for distributed architecture 

Hardware High usage require high end 

server 

Designed to run on commodity 

hardware. 

File System Relies on OS file system Based on distributed file system 

Updates Stable product Still evolving 

Transactions  Support ACID transactions Support BASE 

Schema  Schema required on write Schema required on read 

Processor Needs expensive hardware or 

high-end processor to store huge 

volumes of data. 

In a hadoop cluster, a node requires 

only a processor, a network card, and 

few hard drives. 

Cost Cost around $10,000 to $14,000 

per terabytes of storage 

Cost around $4,000 per terabytes of 

storage. 

 

 

HDFS (Hadoop  Distributed File System) 
 

The Hadoop Distributed File System (HDFS) is based on the Google File System (GFS) and 

provides a distributed file system that is designed to run on large clusters (thousands of 

computers) of small computer machines in a reliable, fault-tolerant manner. 

 

 Unlike other distributed systems, HDFS is highly fault tolerant and designed using 

low-cost hardware. 

 HDFS holds very large amount of data and provides easier access. To store such huge 

data, the files split into blocks are stored across multiple machines. 

 These files are stored in redundant fashion to rescue the system from possible data 

losses in case of failure. 

 

HDFS Architecture 

HDFS uses a master/slave architecture where master consists of a single Name Node that 

manages the file system metadata and one or more slave. Data Nodes that store the actual 

data. 

 

Name Node 

The namenode is the commodity hardware that contains the GNU/Linux operating system 

and the namenode software. It is a software that can be run on commodity hardware. 

NameNode is the master node in the Apache Hadoop HDFS Architecture that maintains and 

manages the blocks present on the DataNodes (slave nodes). NameNode is a very highly 

available server that manages the File System Namespace and controls access to files by 

clients. Stores metadata for the files, like the directory structure of a typical File System. 

Functions of Name Node 

 Regulates client’s access to files. 

 It also executes file system operations such as renaming, closing, and opening files 

and directories. It also determines the mapping of blocks to DataNodes. 

  It is the master daemon that maintains and manages the DataNodes (slave nodes)  



  It records the metadata of all the files stored in the cluster, e.g. The location of blocks 

stored, the size of the files, permissions, hierarchy, etc. There are two files associated 

with the metadata: 

 FsImage: It contains the complete state of the file system namespace since the start of 

the NameNode. 

 EditLogs: It contains all the recent modifications made to the file system with respect 

to the most recent FsImage 

 It regularly receives a Heartbeat and a block report from all the DataNodes in the 

cluster to ensure that the DataNodes are live. 

 The NameNode is also responsible to take care of the replication factor of all the 

blocks which we will discuss in detail later in this HDFS tutorial blog. 

 

 

 
 

Data Node: 

 The datanode is a commodity hardware having the GNU/Linux operating system and 

datanode software. These nodes manage the data storage of their system. 

 A file in an HDFS namespace is split into several blocks and those blocks are stored 

in a set of Data Nodes. 

 Data nodes store and retrieve blocks when they are requested by client or name node. 

 They report back to name node periodically, with list of blocks that they are storing. 

 The data node also perform operations such as block creation, deletion and replication 

as stated by the name node. 

 They send heartbeats to the NameNode periodically to report the overall health of 

HDFS, by default, this frequency is set to 3 seconds. 

 

Secondary NameNode: 

Apart from these two daemons, there is a third daemon or a process called Secondary 

NameNode. The Secondary NameNode works concurrently with the primary NameNode as a 

helper daemon. And don’t be confused about the Secondary NameNode being a backup 

NameNode because it is not. 



Functions of Secondary NameNode: 

 The Secondary NameNode is one which constantly reads all the file systems and 

metadata from the RAM of the NameNode and writes it into the hard disk or the file 

system. 

 It is responsible for combining the EditLogs with FsImage from the NameNode.  

 It downloads the EditLogs from the NameNode at regular intervals and applies to 

FsImage. The new FsImage is copied back to the NameNode, which is used whenever 

the NameNode is started the next time. 

Hence, Secondary NameNode performs regular checkpoints in HDFS. Therefore, it is also 

called CheckpointNode 

 

Block and Replication 

Blocks are the nothing but the smallest continuous location on your hard drive where data is 

stored. In general, in any of the File System, you store the data as a collection of blocks.  

 Generally the user data is stored in the files of HDFS. The file in a file system will be 

divided into one or more segments and/or stored in individual data nodes. 

 These file segments are called as blocks. In other words, the minimum amount of data 

that HDFS can read or write is called a Block. 

 The default block size in Hadoop version 1 is 64MB, but it can be increased as per the 

need to change in HDFS configuration. Default block size in Hadoop version 2 is 128 

MB. 

 

Replication Management: 

HDFS provides a reliable way to store huge data in a distributed environment as data blocks. 

The blocks are also replicated to provide fault tolerance. The default replication factor is 3 

which is again configurable.  

 
 

• Monitoring: There is a continuous “heartbeat” communication between the data 

nodes to the name node. 

• If a data node’s heartbeat is not heard by the name node, the data node is considered 

to have failed and is no longer available. 

• In this case, a replica is employed to replace the failed node, and a change is made to 

the replication scheme. 



 
 

HDFS Read/ Write Architecture: 

HDFS follows Write Once – Read Many Philosophy. So, you can’t edit files already stored in 

HDFS. But, you can append new data by re-opening the file. 

 

HDFS Write Architecture:Assume that the system block size is configured for 128 MB 

(default). So, the client will be dividing the file “example.txt” into 2 blocks – one of 128 MB 

(Block A) and the other of 120 MB (block B).  

Now, the following protocol will be followed whenever the data is written into HDFS: 

 At first, the HDFS client will reach out to the NameNode for a Write Request against 

the two blocks, say, Block A & Block B. 

 The NameNode will then grant the client the write permission and will provide the IP 

addresses of the DataNodes where the file blocks will be copied eventually. 

 The selection of IP addresses of DataNodes is purely randomized based on 

availability, replication factor and rack awareness that we have discussed earlier. 

 Let’s say the replication factor is set to default i.e. 3. Therefore, for each block the 

NameNode will be providing the client a list of (3) IP addresses of DataNodes. The 

list will be unique for each block. 

 Suppose, the NameNode provided following lists of IP addresses to the client:  

o For Block A, list A = {IP of DataNode 1, IP of DataNode 4, IP of DataNode 

6} 

o For Block B, set B = {IP of DataNode 3, IP of DataNode 7, IP of DataNode 9} 

 Each block will be copied in three different DataNodes to maintain the replication 

factor consistent throughout the cluster. 

o Now the whole data copy process will happen in three stages: Set up of 

Pipeline 

o Data streaming and replication 

o Shutdown of Pipeline (Acknowledgement stage)  

1. Set up of Pipeline: 

Before writing the blocks, the client confirms whether the DataNodes, present in each of the 

list of IPs, are ready to receive the data or not. In doing so, the client creates a pipeline for 

each of the blocks by connecting the individual DataNodes in the respective list for that 



block. Let us consider Block A. The list of DataNodes provided by the NameNode is: For 

Block A, list A = {IP of DataNode 1, IP of DataNode 4, IP of DataNode 6}.  

 

So, for block A, the client will be performing the following steps to create a pipeline: 

 The client will choose the first DataNode in the list (DataNode IPs for Block A) 

which is DataNode 1 and will establish a TCP/IP connection. 

 The client will inform DataNode 1 to be ready to receive the block. It will also 

provide the IPs of next two DataNodes (4 and 6) to the DataNode 1 where the block is 

supposed to be replicated. 

 The DataNode 1 will connect to DataNode 4. The DataNode 1 will inform DataNode 

4 to be ready to receive the block and will give it the IP of DataNode 6. Then, 

DataNode 4 will tell DataNode 6 to be ready for receiving the data. 

 Next, the acknowledgement of readiness will follow the reverse sequence, i.e. From 

the DataNode 6 to 4 and then to 1. 

 At last DataNode 1 will inform the client that all the DataNodes are ready and a 

pipeline will be formed between the client, DataNode 1, 4 and 6. 

 Now pipeline set up is complete and the client will finally begin the data copy or 

streaming process. 

2. Data Streaming: 

As the pipeline has been created, the client will push the data into the pipeline. Now, don’t 

forget that in HDFS, data is replicated based on replication factor. So, here Block A will be 

stored to three DataNodes as the assumed replication factor is 3. Moving ahead, the client 

will copy the block (A) to DataNode 1 only. The replication is always done by DataNodes 

sequentially. 



 
 

So, the following steps will take place during replication: 

 Once the block has been written to DataNode 1 by the client, DataNode 1 will connect 

to DataNode 4. 

 Then, DataNode 1 will push the block in the pipeline and data will be copied to 

DataNode 4. 

 Again, DataNode 4 will connect to DataNode 6 and will copy the last replica of the 

block. 

3. Shutdown of Pipeline or Acknowledgement stage: 

Once the block has been copied into all the three DataNodes, a series of acknowledgements 

will take place to ensure the client and NameNode that the data has been written successfully. 

Then, the client will finally close the pipeline to end the TCP session. 

As shown in the figure below, the acknowledgement happens in the reverse sequence i.e. 

from DataNode 6 to 4 and then to 1. Finally, the DataNode 1 will push three 

acknowledgements (including its own) into the pipeline and send it to the client. The client 

will inform NameNode that data has been written successfully. The NameNode will update 

its metadata and the client will shut down the pipeline. 

Similarly, Block B will also be copied into the DataNodes in parallel with Block A. So, 

the following things are to be noticed here: 

 The client will copy Block A and Block B to the first DataNode simultaneously. 



 Therefore, in our case, two pipelines will be formed for each of the block and all the 

process discussed above will happen in parallel in these two pipelines. 

 The client writes the block into the first DataNode and then the DataNodes will be 

replicating the block sequentially. 

 
 

HDFS Read Architecture: 
HDFS Read architecture is comparatively easy to understand. Let’s take the above example 

again where the HDFS client wants to read the file “example.txt” now. Now, following steps 

will be taking place while reading the file: 

 The client will reach out to NameNode asking for the block metadata for the file 

“example.txt”. 

 The NameNode will return the list of DataNodes where each block (Block A and B) 

are stored. 

 After that client, will connect to the DataNodes where the blocks are stored. 

 The client starts reading data parallel from the DataNodes (Block A from DataNode 1 

and Block B from DataNode 3). 

 Once the client gets all the required file blocks, it will combine these blocks to form a 

file. 

While serving read request of the client, HDFS selects the replica which is closest to the 

client. This reduces the read latency and the bandwidth consumption. Therefore, that replica 

is selected which resides on the same rack as the reader node, if possible. 

 



 

 

MAPREDUCE 
 MapReduce is a programming model for writing applications that can process Big 

Data in parallel on multiple nodes. MapReduce provides analytical capabilities for 

analysing huge volumes of complex data. 

 MapReduce is a processing technique and a program model for distributed computing 

based on java. 

 The MapReduce algorithm contains two important tasks, namely Map and Reduce. 

 The Map task takes a set of data and converts it into another set of data, where 

individual elements are broken down into tuples (key-value pairs). 

 The Reduce task takes the output from the Map as an input and combines those data 

tuples (key-value pairs) into a smaller set of tuples. 

 The major advantage of MapReduce is that it is easy to scale data processing over 

multiple computing nodes. Under the MapReduce model, the data processing 

primitives are called mappers and reducers. 

 

The Algorithm 

MapReduce program executes in three stages, namely map stage, shuffle stage, and reduce 

stage. 

1. Map stage : The map or mapper’s job is to process the input data. Generally the input 

data is in the form of file or directory and is stored in the Hadoop file system (HDFS). 

The input file is passed to the mapper function line by line. The mapper processes the 

data and creates several small chunks of data. 

2. Reduce stage: This stage is the combination of the Shuffle stage and the Reduce 

stage. The Reducer’s job is to process the data that comes from the mapper. After 



processing, it produces a new set of output, which will be stored in the HDFS. 

 

 
 

Phases 

Input Phase − Here we have a Record Reader that translates each record in an input file and 

sends the parsed data to the mapper in the form of key-value pairs. 

Map − Map is a user-defined function, which takes a series of key-value pairs and processes 

each one of them to generate zero or more key-value pairs. 

Intermediate Keys − They key-value pairs generated by the mapper are known as 

intermediate keys. 

Combiner − It takes the intermediate keys from the mapper as input and applies a user-

defined code to aggregate the values in a small scope of one mapper.  

Shuffle and Sort − It downloads the grouped key-value pairs onto the local machine, where 

the Reducer is running. The individual key-value pairs are sorted by key into a larger data 

list. The data list groups the equivalent keys together so that their values can be iterated easily 

in the Reducer task. 

Reducer − The Reducer takes the grouped key-value paired data as input and runs a Reducer 

function on each one of them. Here, the data can be aggregated, filtered, and combined in a 

number of ways, and it requires a wide range of processing. Once the execution is over, it 

gives zero or more key-value pairs to the final step. 

Output Phase − In the output phase, we have an output formatter that translates the final 

key-value pairs from the Reducer function and writes them onto a file using a record writer. 

 

Working 

 During a MapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate 

servers in the cluster. 

 The framework manages all the details of data-passing such as issuing tasks, verifying 

task completion, and copying data around the cluster between the nodes. 

 Most of the computing takes place on nodes with data on local disks that reduces the 

network traffic. 

 After completion of the given tasks, the cluster collects and reduces the data to form 

an appropriate result, and sends it back to the Hadoop server. 

 Typically both the input and the output are stored in a file-system. The framework 

takes care of scheduling tasks, monitoring them and re-executes the failed tasks. 

 

The MapReduce Framework 

The MapReduce framework consists of a single master JobTracker and one slave 

TaskTracker per cluster-node. 

 



 

 

Job Tracker 

 The master Job Tracker is responsible for resource management, tracking resource 

consumption/availability and scheduling the jobs component tasks on the slaves, 

monitoring them and re-executing the failed tasks. 

 

Task Tracker 

 The slaves TaskTracker execute the tasks as directed by the master and provide task-

status information to the master periodically. 

 The JobTracker is a single point of failure for the Hadoop MapReduce service which 

means if JobTracker goes down, all running jobs are halted. 

 

 
 

YARN 

 Hadoop Yet Another Resource Negotiator (YARN): This is a framework for job 

scheduling and cluster resource management. A resource management framework for 

scheduling and handling resource requests from distributed applications. 

Why YARN? 

 In Hadoop version 1.0 which is also referred to as MRV1(MapReduce Version 1), 

MapReduce performed both processing and resource management functions. It 

consisted of a Job Tracker which was the single master. This design resulted in 

scalability bottleneck due to a single Job Tracker.  

 

 The practical limits of such a design are reached with a cluster of 5000 nodes and 

40,000 tasks running concurrently.  

 

 Apart from this limitation, the utilization of computational resources is inefficient in 

MRV1. Also, the Hadoop framework became limited only to MapReduce processing 

paradigm.  

 

To overcome all these issues, YARN was introduced in Hadoop version 2.0 in the year 2012 



by Yahoo and Hortonworks. The basic idea behind YARN is to relieve MapReduce by taking 

over the responsibility of Resource Management and Job Scheduling. YARN started to give 

Hadoop the ability to run non-MapReduce jobs within the Hadoop framework.  

 
 

YARN allows different data processing methods like graph processing, interactive 

processing, stream processing as well as batch processing to run and process data stored in 

HDFS. Therefore YARN opens up Hadoop to other types of distributed applications beyond 

MapReduce. 

 

YARN enabled the users to perform operations as per requirement by using a variety of tools 

like Spark for real-time processing, Hive for SQL, HBase for NoSQL and others.  

 

YARN Architecture 

Apart from Resource Management, YARN also performs Job Scheduling. YARN performs 

all your processing activities by allocating resources and scheduling tasks. Apache Hadoop 

YARN Architecture consists of the following main components : 

1. Resource Manager: Runs on a master daemon and manages the resource allocation 

in the cluster. 

2. Node Manager: They run on the slave daemons and are responsible for the execution 

of a task on every single Data Node. 

3. Application Master: Manages the user job lifecycle and resource needs of individual 

applications. It works along with the Node Manager and monitors the execution of 

tasks. 

4. Container: Package of resources including RAM, CPU, Network, HDD etc on a 

single node. 

 

 



 

Components of YARN 

You can consider YARN as the brain of your Hadoop Ecosystem.  

Resource Manager 

 It is the ultimate authority in resource allocation.  

 On receiving the processing requests, it passes parts of requests to corresponding node 

managers accordingly, where the actual processing takes place. 

 It is the arbitrator of the cluster resources and decides the allocation of the available 

resources for competing applications. 

 Optimizes the cluster utilization like keeping all resources in use all the time against 

various constraints such as capacity guarantees, fairness, and SLAs. 

 It has two major components:  a) Scheduler    b) Application Manager 

a) Scheduler 

 The scheduler is responsible for allocating resources to the various running 

applications subject to constraints of capacities, queues etc. 

 It is called a pure scheduler in ResourceManager, which means that it does not 

perform any monitoring or tracking of status for the applications. 

 If there is an application failure or hardware failure, the Scheduler does not guarantee 

to restart the failed tasks. 

 Performs scheduling based on the resource requirements of the applications. 

 It has a pluggable policy plug-in, which is responsible for partitioning the cluster 

resources among the various applications. There are two such plug-ins: Capacity 

Scheduler and Fair Scheduler, which are currently used as Schedulers in 

ResourceManager. 



        b) Application Manager 

 It is responsible for accepting job submissions. 

 Negotiates the first container from the Resource Manager for executing the 

application specific Application Master. 

 Manages running the Application Masters in a cluster and provides service for 

restarting the Application Master container on failure. 

Node Manager 

 It takes care of individual nodes in a Hadoop cluster and manages user jobs and 

workflow on the given node. 

 It registers with the Resource Manager and sends heartbeats with the health status of 

the node. 

 Its primary goal is to manage application containers assigned to it by the resource 

manager. 

 It keeps up-to-date with the Resource Manager. 

 Application Master requests the assigned container from the Node Manager by 

sending it a Container Launch Context(CLC) which includes everything the 

application needs in order to run. The Node Manager creates the requested container 

process and starts it. 

 Monitors resource usage (memory, CPU) of individual containers. 

 Performs Log management. 

 It also kills the container as directed by the Resource Manager. 

Application Master 

 An application is a single job submitted to the framework. Each such application has a 

unique Application Master associated with it which is a framework specific entity. 

 It is the process that coordinates an application’s execution in the cluster and also 

manages faults. 

 Its task is to negotiate resources from the Resource Manager and work with the Node 

Manager to execute and monitor the component tasks. 

 It is responsible for negotiating appropriate resource containers from the 

ResourceManager, tracking their status and monitoring progress. 

 Once started, it periodically sends heartbeats to the Resource Manager to affirm its 

health and to update the record of its resource demands. 

Container 

 It is a collection of physical resources such as RAM, CPU cores, and disks on a single 

node. 

 YARN containers are managed by a container launch context which is container life-

cycle(CLC). This record contains a map of environment variables, dependencies 

stored in a remotely accessible storage, security tokens, payload for Node Manager 

services and the command necessary to create the process. 

 It grants rights to an application to use a specific amount of resources (memory, CPU 

etc.) on a specific host. 

 



Application Workflow in Hadoop YARN 

Refer to the given image and see the following steps involved in Application workflow of 

Apache Hadoop YARN: 

 

1. Client submits an application 

2. Resource Manager allocates a container to start Application Manager 

3. Application Manager registers with Resource Manager 

4. Application Manager asks containers from Resource Manager 

5. Application Manager notifies Node Manager to launch containers 

6. Application code is executed in the container 

7. Client contacts Resource Manager/Application Manager to monitor application’s 

status 

8. Application Manager unregisters with Resource Manager 

 

 


	1. Set up of Pipeline:
	3. Shutdown of Pipeline or Acknowledgement stage:
	Resource Manager
	Node Manager
	Application Master
	Container




