

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and Data Science

Course Name – Big Data Analytics III Year / V Semester

Unit 3 – DATA ANALYTICAL FRAMEWORKS

Topic - Yarn Components

Components of YARN Resource Manager

- It is the ultimate authority in resource allocation. \bullet
- On receiving the processing requests, it passes parts of requests to corresponding node managers accordingly, where the actual processing takes place.
- It is the arbitrator of the cluster resources and decides the allocation of the available resources ulletfor competing applications.
- Optimizes the cluster utilization like keeping all resources in use all the time against various constraints such as capacity guarantees, fairness, and SLAs.
- It has two major components: lacksquarea) Scheduler b) Application Manager

a) Scheduler

- The scheduler is responsible for allocating resources to the various running applications subject to constraints of capacities, queues etc.
- It is called a pure scheduler in ResourceManager, which means that it does not perform any ulletmonitoring or tracking of status for the applications.
- If there is an application failure or hardware failure, the Scheduler does not guarantee to restart \bullet the failed tasks.
- Performs scheduling based on the resource requirements of the applications. ullet
- It has a pluggable policy plug-in, which is responsible for partitioning the cluster resources \bullet among the various applications.
- There are two such plug-ins: Capacity Scheduler and Fair Scheduler, which are currently used as • Schedulers in ResourceManager.

b) Application Manager

- It is responsible for accepting job submissions. \bullet
- Negotiates the first container from the Resource Manager for executing the application specific ۲ Application Master.
- Manages running the Application Masters in a cluster and provides service for restarting the ۲ Application Master container on failure.

Node Manager

- It takes care of individual nodes in a Hadoop cluster and manages user jobs and workflow on the \bullet given node.
- It registers with the Resource Manager and sends heartbeats with the health status of the node. ullet
- Its primary goal is to manage application containers assigned to it by the resource manager. ullet
- It keeps up-to-date with the Resource Manager. \bullet
- Application Master requests the assigned container from the Node Manager by sending it a • Container Launch Context(CLC) which includes everything the application needs in order to run. The Node Manager creates the requested container process and starts it.
- Monitors resource usage (memory, CPU) of individual containers. ullet
- Performs Log management. \bullet
- It also kills the container as directed by the Resource Manager. Yarn / Big Data Analytics / AD / SNSCE •

5/10

Application Master

- An application is a single job submitted to the framework. Each such application has a unique \bullet Application Master associated with it which is a framework specific entity.
- It is the process that coordinates an application's execution in the cluster and also manages • faults.
- Its task is to negotiate resources from the Resource Manager and work with the Node Manager to ulletexecute and monitor the component tasks.
- It is responsible for negotiating appropriate resource containers from the ResourceManager, ullettracking their status and monitoring progress.
- Once started, it periodically sends heartbeats to the Resource Manager to affirm its health and to ${\bullet}$ update the record of its resource demands.

Yarn / Big Data Analytics / AD / SNSCE

6/10

Container

- It is a collection of physical resources such as RAM, CPU cores, and disks on a single node.
- YARN containers are managed by a container launch context which is container life-cycle(CLC). \bullet
- This record contains a map of environment variables, dependencies stored in a remotely ulletaccessible storage, security tokens, payload for Node Manager services and the command necessary to create the process.
- It grants rights to an application to use a specific amount of resources (memory, CPU etc.) on ulleta specific host.

Application Workflow in Hadoop YARN

Refer to the given image and see the following steps involved in Application workflow of Apache ulletHadoop YARN:

Yarn / Big Data Analytics / AD / SNSCE

8/10

Application Workflow in Hadoop YARN

- Client submits an application \bullet
- Resource Manager allocates a container to start Application Manager
- **Application Manager registers with Resource Manager**
- Application Manager asks containers from Resource Manager
- Application Manager notifies Node Manager to launch containers
- Application code is executed in the container
- Client contacts Resource Manager/Application Manager to monitor application's status
- **Application Manager unregisters with Resource Manager** •

THANK YOU

