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UNIT 2 

 

Introduction  to  Essential  Data Science Packages:  Numpy: Numpy Data types, Scipy,  

Jupyter,  Statsmodels  and  Pandas Package – Scikit learn, R programming . 

Programs : Numpy - Creation of Arrays, Indexing and Slicing Operations, Copy and View 

Scipy – Manipulation of mathematical functions using special package, Pandas – Creation 

of Series, Creation of DataFrame 

 

Numpy 

NumPy, which stands for Numerical Python, is a library consisting of multidimensional 

array objects and a collection of routines for processing those arrays. Using NumPy, 

mathematical and logical operations on arrays can be performed. 

 

NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can 

use it freely. 

 

Why Use NumPy? 

In Python we have lists that serve the purpose of arrays, but they are slow to 

process.NumPy aims to provide an array object that is up to 50x faster than traditional 

Python lists. 

 

The array object in NumPy is called ndarray, it provides a lot of supporting functions that 

make working with ndarray very easy.Arrays are very frequently used in data science, 

where speed and resources are very important. 

 

Operations using NumPy 

Using NumPy, a developer can perform the following operations  

 Mathematical and logical operations on arrays. 

 Fourier transforms and routines for shape manipulation. 

 Operations related to linear algebra. NumPy has in-built functions for linear algebra 

and random number generation 

 

Every item in a ndarray takes the same size as the block in the memory. Each element in 

ndarray is an object of the data-type object (called dtype). 

 



 

Arrays 

Creating array with numpy 

NumPy is used to work with arrays. The array object in NumPy is called ndarray.We can 

create a NumPy ndarray object by using the array() function. 

 

Example 

import numpy as np  

arr = np.array([1, 2, 3, 4, 5])  

print(arr)  

 

Output 

[12345] 

 

Creating 1-Dimentional, 2-Dimentional and 3-Dimentional Array 

 An array that has 0-D arrays as its elements is called uni-dimensional or 1-D 

array.These are the most common and basic arrays. 

 An array that has 1-D arrays as its elements is called a 2-D array.These are often 

used to represent matrix or 2nd order tensors. 

 An array that has 2-D arrays (matrices) as its elements is called 3-D array.These are 

often used to represent a 3rd order tensor. 

 

Example for Creating 1-D, 2-D, 3-D array 

import numpy as np 

arr1 = np.array([1, 2, 3, 4, 5]) // One dimentional array 

arr2 = np.array([[1, 2, 3], [4, 5, 6]]) //Two dimentional array 

arr3 = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) //Three dimentional array 

print(“1-D array\n”, arr1) 

print(“2-D array \n”, arr2) 

print(“3-D array \n”,arr3) 

 

Output 

1-D array 

[1,2,3,4,5] 

2-D array 

[1,2,3] 

[4.5.6] 

3-D array 

[1,2,3] 

[4,5,6] 

[1,2,3] 

[4,5,6] 

 



 

Check Number of Dimensions 

NumPy Arrays provides the ndim attribute that returns an integer that tells us how many 

dimensions the array have. 

Example 

import numpy as np 

arr1 = np.array([1, 2, 3, 4, 5])   // One dimentional array 

arr2 = np.array([[1, 2, 3], [4, 5, 6]]) //Two dimentional array 

arr3 = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) //Three dimentional array 

print(arr1.dim) 

print(arr2.dim) 

print(arr3.dim) 

 

Output 

1 

2 

3 

 

Data Types in NumPy 

NumPy has several datatypes, and refer to data types with one character, like i for 

integers, u for unsigned integers etc. 

Below is a list of all data types in NumPy and the characters used to represent them. 

i – integer, normally either int64 or int32 

b – boolean, true or false 

u - unsigned integer 

f – float 

c - complex float 

m - timedelta 

M - datetime 

O - object 

S - string 

U - unicode string 

V - fixed chunk of memory for other type ( void ) 

 

The NumPy array object has a property called dtype that returns the data type of the array 

Datatype Example 

import numpy as np 

arr = np.array([1,2,3,4]) 

print(arr.dtype) 

 

Output 



int64 

Example-2 

import numpy as np 

arr = np.array([‘apple’, ‘banana’, ‘Mango’, ‘Cherry’]) 

print(arr.dtype) 

 

Output 

<U6 

 

Slicing arrays 

  Slicing in python means taking elements from one given index to another given 

index. 

  We pass slice instead of index like this: [start:end]. 

  We can also define the step, like this: [start:end:step]. 

  If we don't pass start its considered 0 

  If we don't pass end its considered length of array in that dimension 

  If we don't pass step its considered 1 

 

Example 1 

import numpy as np 

arr = np.array([1, 2, 3, 4, 5, 6, 7]) 

print(arr[1:5]) 

 

Output 

[2 3 4 5] 

 

Example 2 

import numpy as np 

arr = np.array([1, 2, 3, 4, 5, 6, 7]) 

print(arr[4:]) 

 

Output 

[5 6 7] 

 

Example -3 

import numpy as np 

arr = np.array([1, 2, 3, 4, 5, 6, 7]) 

print(arr[:4]) 

 

Output 

[1 2 3 4] 

 



 

Shape of an Array 

The shape of an array is the number of elements in each dimension. 

 

Get the Shape of an Array 

NumPy arrays have an attribute called shape that returns a tuple with each index having the 

number of corresponding elements. 

 

Example 

Print the shape of a 2-D array: 

import numpy as np 

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) 

print(arr.shape) 

 

The example above returns (2, 4), which means that the array has 2 dimensions, where the 

first dimension has 2 elements and the second has 4. 

 

Scipy 

SciPy is a free and open-source Python library used for scientific computing and technical 

computing.  

It is a collection of mathematical algorithms and convenience functions built on the NumPy 

extension of Python.  

It adds significant power to the interactive Python session by providing the user with high-

level commands and classes for manipulating and visualizing data.  

 

Why use SciPy 

 SciPy contains varieties of sub packages which help to solve the most common 

issue related to Scientific Computation. 

 SciPy package in Python is the most used Scientific library only second to GNU 

Scientific Library for C/C++ or Matlab’s. 

 Easy to use and understand as well as fast computational power. 

 It can operate on an array of NumPy library. 

 

Numpy VS SciPy 

Numpy: 

Numpy is written in C and use for mathematical or numeric calculation. 

It is faster than other Python Libraries 

Numpy is the most useful library for Data Science to perform basic calculations. 

Numpy contains nothing but array data type which performs the most basic operation like 

sorting, shaping, indexing, etc. 

 

SciPy: 



SciPy is built in top of the NumPy 

SciPy module in Python is a fully-featured version of Linear Algebra while Numpy 

containsonly a few features. 

Most new Data Science features are available in Scipy rather than Numpy. 

 

Sub-packages of SciPy: 

  File input/output – scipy.io 

  Special Function – scipy.special 

  Linear Algebra Operation – scipy.linalg 

  Interpolation – scipy.interpolate 

  Optimization and fit – scipy.optimize 

  Statistics and random numbers – scipy.stats 

  Numerical Integration – scipy.integrate 

  Fast Fourier transforms – scipy.fftpack 

  Signal Processing – scipy.signal 

  Image manipulation – scipy.ndimage 

 

File Input / Output package: 

Scipy, I/O package, has a wide range of functions for work with different files format which 

are Matlab, Arff, Wave, Matrix Market, IDL, NetCDF, TXT, CSV and binary format. 

 

Special Function package 

scipy.special package contains numerous functions of mathematical physics. 

SciPy special function includes Cubic Root, Exponential, Log sum Exponential, Lambert, 

Permutation and Combinations, Gamma, Bessel, hypergeometric, Kelvin, beta, parabolic 

cylinder, Relative Error Exponential, etc.. 

 

Linear Algebra with SciPy 

Linear Algebra of SciPy is an implementation of BLAS and ATLAS LAPACK libraries. 

Performance of Linear Algebra is very fast compared to BLAS and LAPACK. 

Linear algebra routine accepts two-dimensional array object and output is also a two-

dimensional array. 

Inverse Matrix , Eigenvalues and Eigenvector 

 

Discrete Fourier Transform – scipy.fftpack 

DFT is a mathematical technique which is used in converting spatial data into frequency 

data. 

FFT (Fast Fourier Transformation) is an algorithm for computing DFT 

FFT is applied to a multidimensional array. 

Frequency defines the number of signal or wavelength in particular time period. 

 

Optimization and Fit in SciPy – scipy.optimize 

Optimization provides a useful algorithm for minimization of curve fitting, 



multidimensional or scalar and root fitting. 

 

Integration with Scipy – Numerical Integration 

When we integrate any function where analytically integrate is not possible, we need to turn 

for numerical integration. 

SciPy provides functionality to integrate function with numerical integration. 

scipy.integrate library has single integration, double, triple, multiple, Gaussian quadrate, 

Romberg, Trapezoidal and Simpson’s rules. 

 

Jupyter 

Jupyter Notebook is an open-source, web-based interactive environment, which allows you 

to create and share documents that contain live code, mathematical equations, graphics, 

maps, plots, visualizations, and narrative text.  

It integrates with many programming languages like Python, PHP, R, C#, etc. 

 

It was spun off from IPython in 2014 by Fernando Pérez and Brian Granger. Project 

Jupyter's name is a reference to the three core programming languages supported by Jupyter, 

which are Julia, Python and R, and also a homage to Galileo's notebooks recording the 

discovery of the moons of Jupiter. 

 

Dashboard of Jupyter Notebook 

 
It contains 3 tabs namely Files, Running, Clusters 

 

Files Tab 

The Files tab is used to display files and folders in the current directory. It also uses an 

Upload button through which a file can be uploaded to a notebook server. 

 

Running Tab 

The Running tab is used to show currently running notebooks. 

 

Cluster Tab 

IPython provides the Cluster Tab. IPython is a parallel computing framework, which is an 

extended version of the IPython kernel. 

 



 

 

User interface of Jupyter Notebook 

When you create a new notebook, the notebook will be presented with the notebook name, 

menu bar, toolbar, and an empty code cell. 

 
Notebook name: Notebook name is displayed at the top of the page, next to the Jupyter 

logo. 

Menu bar: The menu bar presents different options that are used to manipulate the 

notebook functions. 

Toolbar: The toolbar provides a quick way for performing the most-used operations within 

the notebook. 

Code cell: A code cell allows you to edit and write a new code. 

 

Components of Jupyter Notebook 

There are the following three components of Jupyter Notebook - 

The notebook web application: It is an interactive web application for writing and running 

the code.The notebook web application allows users to: 

 Edit code in the browser with automatic syntax highlighting and indentation. 

 Run code on the browser. 

 See results of computations with media representations, such as HTML, LaTex, png, 

pdf, etc. 

 Create and use JavaScript widgets. 

 Includes mathematical equations using Markdown cells. 

Kernels: Kernels are the separate processes started by the notebook web application that is 

used to run a user's code in the given language and return output to the notebook web 

application. 

In Jupyter notebook kernel is available in the following languages: 

 Python 

 Julia 

 Ruby 

 R 

 Scala 

 node.js 

 Go 

Notebook documents: Notebook document contains a representation of all content which is 



visible in the notebook web application, including inputs and outputs of the computations, 

text, mathematical equations, graphs, and images. 

Working with cells 

Click on the first cell in the notebook to enter in the edit mode. Now you can write the code 

in working area. After writing the code, you can run it by pressing the Shift+ Enter key or 

directly click on the run button at the top of the screen. 

Example 

 
 

Cell Types 

There are technically four cell types: Code, Markdown, Raw NBConvert, and Heading.  

Code Cell 

The contents present in a code cell is treated as statements in a programming language of the 

current kernel. By default, Jupyter notebook's kernel is in Python so you can write Python 

statements in a code cell. When you run the statement, its output is displayed below the code. 

Output can be presented in the form of text, image, matplotlib plots, or HTML tables. 

Markdown cell provides documentation to the notebook and makes the notebook more 

attractive. This cell contains all types of formatting features such as making text bold and 

italic, headers, displaying ordered or unordered list, Bullet lists, Hyperlinks, tabular contents, 

images, etc.  

The Raw NBConvert cell type is only intended for special use cases when using 

the nbconvert command line tool. Basically it allows you to control the formatting in a very 

specific way when converting from a Notebook to another format. 

The Heading cell type is no longer supported and will display a dialog that says as much. 

 



 

 

Pandas Package 

Pandas is an open source Python package that is most widely used for data science/data 

analysis and machine learning tasks. It is built on top of another package named Numpy, 

which provides support for multi-dimensional arrays.  

 

Pandas is an open-source Python Library providing high-performance data manipulation and 

analysis tool using its powerful data structures. The name Pandas is derived from the word 

Panel Data – an Econometrics from Multidimensional data. 

 

In 2008, developer Wes McKinney started developing pandas when in need of high 

performance, flexible tool for analysis of data. 

 

Python with Pandas is used in a wide range of fields including academic and commercial 

domains including finance, economics, Statistics, analytics, etc. 

 

Key Features of Pandas 

 Fast and efficient DataFrame object with default and customized indexing. 

 Tools for loading data into in-memory data objects from different file formats. 

 Data alignment and integrated handling of missing data. 

 Reshaping and pivoting of date sets. 

 Label-based slicing, indexing and subsetting of large data sets. 

 Columns from a data structure can be deleted or inserted. 

 Group by data for aggregation and transformations. 

 High performance merging and joining of data. 

 Time Series functionality. 

 

Why Use Pandas? 

 Pandas allows us to analyze big data and make conclusions based on statistical 

theories. 

 Pandas can clean messy data sets, and make them readable and relevant. 

 Relevant data is very important in data science. 

 

Pandas generally provide two data structures for manipulating data, They are:  

 Series 

 DataFrame 

 



 

 

Series 

Pandas Series is a one-dimensional labeled array capable of holding data of any type (integer, 

string, float, python objects, etc.). The axis labels are collectively called indexes. Pandas 

Series is nothing but a column in an excel sheet. Labels need not be unique but must be a 

hashable type. Pandas series can be created using list or dictionaries. 

Example - Create a simple Pandas Series from a list: 

import pandas as pd  

a = [1, 7, 2] 

myvar = pd.Series(a) 

print(myvar) 

Output 

0    1 

1    7 

2    2 

dtype: int64 

 

Labels 

If nothing else is specified, the values are labeled with their index number. First value has 

index 0, second value has index 1 etc.This label can be used to access a specified value. 

Create Labels 

With the index argument, you can name your own labels. 

import pandas as pd  

a = [1, 7, 2] 

myvar = pd.Series(a, index = ["x", "y", "z"]) 

print(myvar) 

 

Output 

x    1 

y    7 

z    2 

dtype: int64 

 

When you have created labels, you can access an item by referring to the label. 

Example 

Return the value of "y": 

print(myvar["y"]) 

 

Output 

7 

 



Key/Value Objects as Series 

We can also use a key/value object, like a dictionary, when creating a Series. 

Example 
Create a simple Pandas Series from a dictionary: 

import pandas as pd  

calories = {"day1": 420, "day2": 380, "day3": 390} 

myvar = pd.Series(calories) 

print(myvar) 

 

Output 

Day1 420 

Day2 380 

Day3 390 

 

Accessing Data from Series with Position 

Data in the series can be accessed similar to that in an ndarray. 

Example  

Retrieve the first element. As we already know, the counting starts from zero for the array, 

which means the first element is stored at zeroth position and so on. 

import pandas as pd 

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e']) 

 

#retrieve the first element 

print s[0] 

Its output is as follows − 

1 

 

Example  

Retrieve the first three elements in the Series. If a : is inserted in front of it, all items from that 

index onwards will be extracted. If two parameters (with : between them) is used, items 

between the two indexes (not including the stop index) 

import pandas as pd 

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e']) 

#retrieve the first three element 

print s[:3] 

Its output is as follows − 

a  1 

b  2 

c  3 

 

Retrieve the last three elements 

import pandas as pd 

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e']) 

#retrieve the last three element 



print s[-3:] 

Its output is as follows − 

c  3 

d  4 

e  5 

 

Retrieve Data Using Label (Index) 

A Series is like a fixed-size dict in that you can get and set values by index label. 

Example  

Retrieve a single element using index label value. 

import pandas as pd 

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e']) 

#retrieve a single element 

print s['a'] 

Its output is as follows − 

1 

 

DataFrame 

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data 

structure with labeled axes (rows and columns). A Data frame is a two-dimensional data 

structure, i.e., data is aligned in a tabular fashion in rows and columns. Pandas DataFrame 

consists of three principal components, the data, rows, and columns. 

Create DataFrame 

A pandas DataFrame can be created using various inputs like − 

 Lists 

 dict 

 Series 

 Numpy ndarrays 

 Another DataFrame 

Create a DataFrame from two Series: 

import pandas as pd  

data = { 

  "calories": [420, 380, 390], 

  "duration": [50, 40, 45] 

} 

myvar = pd.DataFrame(data) 

print(myvar) 

Output 

   calories  duration 

0       420        50 

1       380        40 

2       390        45 



 

Create a DataFrame from Lists 

The DataFrame can be created using a single list or a list of lists. 

import pandas as pd 

data = [1,2,3,4,5] 

df = pd.DataFrame(data) 

print df 

Its output is as follows − 

Output 

0 1  

1 2  

2 3  

3 4  

4 5 

 

Example 2 

import pandas as pd 

data = [['Alex',10],['Bob',12],['Clarke',13]] 

df = pd.DataFrame(data,columns=['Name','Age']) 

print df 

 

Its output is as follows − 

 Name Age  

0 Alex 10  

1 Bob 12  

2 Clarke 13 

 

Create a DataFrame from Dict of ndarrays / Lists 

All the ndarrays must be of same length. If index is passed, then the length of the index 

should equal to the length of the arrays. 

If no index is passed, then by default, index will be range(n), where n is the array length. 

Example 1 

import pandas as pd 

data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]} 

df = pd.DataFrame(data) 

print df 

Its output is as follows − 

    Age      Name 

0     28        Tom 

1     34       Jack 

2     29      Steve 

3     42      Ricky 

 

Let us now create an indexed DataFrame using arrays. 



import pandas as pd 

data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]} 

df = pd.DataFrame(data, index=['rank1','rank2','rank3','rank4']) 

print df 

Its output is as follows − 

         Age    Name 

rank1    28      Tom 

rank2    34     Jack 

rank3    29    Steve 

rank4    42    Ricky 

 

Create a DataFrame from List of Dicts 

List of Dictionaries can be passed as input data to create a DataFrame. The dictionary keys 

are by default taken as column names. 

Example  

The following example shows how to create a DataFrame by passing a list of dictionaries. 

import pandas as pd 

data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}] 

df = pd.DataFrame(data) 

print df 

 

Its output is as follows − 

    a    b      c 

0   1   2     NaN 

1   5   10   20.0 

 

The following example shows how to create a DataFrame by passing a list of dictionaries and 

the row indices. 

import pandas as pd 

data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}] 

df = pd.DataFrame(data, index=['first', 'second']) 

print df 

Its output is as follows − 

        a   b       c 

first   1   2     NaN 

second  5   10   20.0 

 

Series Basic Functionality 

Sr.No. Attribute or Method & Description 

1 
axes 

Returns a list of the row axis labels 

2 
dtype 

Returns the dtype of the object. 



3 
empty 

Returns True if series is empty. 

4 
ndim 

Returns the number of dimensions of the underlying data, by definition 1. 

5 
size 

Returns the number of elements in the underlying data. 

6 
values 

Returns the Series as ndarray. 

7 
head() 

Returns the first n rows. 

8 
tail() 

Returns the last n rows. 

 

Let us now create a Series and see all the above tabulated attributes operation. 

Example 

import pandas as pd 

import numpy as np 

#Create a series with 100 random numbers 

s = pd.Series(np.random.randn(4)) 

print s 

Its output is as follows − 

0   0.967853 

1  -0.148368 

2  -1.395906 

3  -1.758394 

dtype: float64 

 

axes 

Returns the list of the labels of the series. 

 

import pandas as pd 

import numpy as np 

#Create a series with 100 random numbers 

s = pd.Series(np.random.randn(4)) 

print ("The axes are:") 

print s.axes 

Its output is as follows − 

The axes are: 

[RangeIndex(start=0, stop=4, step=1)] 

The above result is a compact format of a list of values from 0 to 5, i.e., [0,1,2,3,4]. 

 

 



empty 

Returns the Boolean value saying whether the Object is empty or not. True indicates that the 

object is empty. 

import pandas as pd 

import numpy as np 

#Create a series with 100 random numbers 

s = pd.Series(np.random.randn(4)) 

print ("Is the Object empty?") 

print s.empty 

Its output is as follows − 

Is the Object empty? 

False 

 

ndim 

Returns the number of dimensions of the object. By definition, a Series is a 1D data structure, 

so it returns  

import pandas as pd 

import numpy as np 

#Create a series with 4 random numbers 

s = pd.Series(np.random.randn(4)) 

print s 

print ("The dimensions of the object:") 

print s.ndim 

Its output is as follows − 

0   0.175898 

1   0.166197 

2  -0.609712 

3  -1.377000 

dtype: float64 

 

The dimensions of the object: 

1 

 

size 

Returns the size(length) of the series. 

import pandas as pd 

import numpy as np 

#Create a series with 4 random numbers 

s = pd.Series(np.random.randn(2)) 

print s 

print ("The size of the object:") 

print s.size 

Its output is as follows − 

0   3.078058 



1  -1.207803 

dtype: float64 

The size of the object: 

2 

values 

Returns the actual data in the series as an array. 

import pandas as pd 

import numpy as np 

#Create a series with 4 random numbers 

s = pd.Series(np.random.randn(4)) 

print s 

print ("The actual data series is:") 

print s.values 

Its output is as follows − 

0   1.787373 

1  -0.605159 

2   0.180477 

3  -0.140922 

dtype: float64 

The actual data series is: 

[ 1.78737302 -0.60515881 0.18047664 -0.1409218 ] 

 

Scikit Learn 

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python. It 

provides a selection of efficient tools for machine learning and statistical modeling including 

classification, regression, clustering and dimensionality reduction via a consistence interface 

in Python. This library, which is largely written in Python, is built upon NumPy, SciPy and 

Matplotlib. 

 

It was originally called scikits.learn and was initially developed by David Cournapeau as a 

Google summer of code project in 2007. Later, in 2010, Fabian Pedregosa, Gael Varoquaux, 

Alexandre Gramfort, and Vincent Michel, from FIRCA (French Institute for Research in 

Computer Science and Automation), 

 

The functionality that scikit-learn provides include: 

 Regression, including Linear and Logistic Regression 

 Classification, including K-Nearest Neighbors 

 Clustering, including K-Means and K-Means++ 

 Model selection 

 Preprocessing, including Min-Max Normalization 

 

 

 



Features 

Rather than focusing on loading, manipulating and summarising data, Scikit-learn library is 

focused on modeling the data. Some of the most popular groups of models provided by 

Sklearn are as follows − 

Supervised Learning algorithms − Almost all the popular supervised learning algorithms, 

like Linear Regression, Support Vector Machine (SVM), Decision Tree etc., are the part of 

scikit-learn. 

Unsupervised Learning algorithms − On the other hand, it also has all the popular 

unsupervised learning algorithms from clustering, factor analysis, PCA (Principal Component 

Analysis) to unsupervised neural networks. 

Clustering − This model is used for grouping unlabeled data. 

Cross Validation − It is used to check the accuracy of supervised models on unseen data. 

Dimensionality Reduction − It is used for reducing the number of attributes in data which 

can be further used for summarisation, visualisation and feature selection. 

Ensemble methods − As name suggest, it is used for combining the predictions of multiple 

supervised models. 

Feature extraction − It is used to extract the features from data to define the attributes in 

image and text data. 

Feature selection − It is used to identify useful attributes to create supervised models. 

 

Estimator API 

It is one of the main APIs implemented by Scikit-learn. It provides a consistent interface for a 

wide range of ML applications that’s why all machine learning algorithms in Scikit-Learn are 

implemented via Estimator API. The object that learns from the data (fitting the data) is an 

estimator. It can be used with any of the algorithms like classification, regression, clustering 

or even with a transformer, that extracts useful features from raw data. 

 

For fitting the data, all estimator objects expose a fit method that takes a dataset shown as 

follows − 

estimator.fit(data) 

Next, all the parameters of an estimator can be set, as follows, when it is instantiated by the 

corresponding attribute. 

estimator = Estimator (param1=1, param2=2) 

estimator.param1 

The output of the above would be 1. 

 

Steps in using Estimator API 

Followings are the steps in using the Scikit-Learn estimator API − 

Step 1: Choose a class of model 

In this first step, we need to choose a class of model. It can be done by importing the 

appropriate Estimator class from Scikit-learn. 

Step 2: Choose model hyperparameters 

In this step, we need to choose class model hyperparameters. It can be done by instantiating 

the class with desired values. 



Step 3: Arranging the data 

Next, we need to arrange the data into features matrix (X) and target vector(y). 

Step 4: Model Fitting 

Now, we need to fit the model to your data. It can be done by calling fit() method of the 

model instance. 

Step 5: Applying the model 

After fitting the model, we can apply it to new data. For supervised learning, use predict() 

method to predict the labels for unknown data. While for unsupervised learning, use predict() 

or transform() to infer properties of the data. 

 

R Programming 

R is a programming language and software environment for statistical analysis, graphics 

representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the 

University of Auckland, New Zealand, and is currently developed by the R Development 

Core Team. R is freely available under the GNU General Public License. 

 

Creating Variables in R 

Variables are containers for storing data values. 

 

R does not have a command for declaring a variable. A variable is created the moment you 

first assign a value to it. To assign a value to a variable, use the <- sign. To output (or print) 

the variable value, just type the variable name: 

 

Example 

name <- "John" 

age <- 40 

 

name   # output "John" 

age    # output 40 

 

Basic Data Types 

Basic data types in R can be divided into the following types: 

 numeric - (10.5, 55, 787) 

 integer - (1L, 55L, 100L, where the letter "L" declares this as an integer) 

 complex - (9 + 3i, where "i" is the imaginary part) 

 character (a.k.a. string) - ("k", "R is exciting", "FALSE", "11.5") 

 logical (a.k.a. boolean) - (TRUE or FALSE) 

 

We can use the class() function to check the data type of a variable: 

Example 

# numeric 

x <- 10.5 

class(x) 



 

# integer 

x <- 1000L 

class(x) 

 

# complex 

x <- 9i + 3 

class(x) 

 

# character/string 

x <- "R is exciting" 

class(x) 

 

# logical/boolean 

x <- TRUE 

class(x) 

 

Output 

[1] "numeric" 

[1] "integer" 

[1] "complex" 

[1] "character" 

[1] "character" 

 

R Data Structure 

 Vectors 

 Lists 

 Matrices 

 Arrays 

 Factors 

 Data Frame 

 

Vectors 

 A vector is simply a list of items that are of the same type. 

 To combine the list of items to a vector, use the c() function and separate the items by 

a comma. 

 In the example below, we create a vector variable called fruits, that combine strings: 

Example 

Vector of strings 

fruits <- c("banana", "apple", "orange") 

# Print fruits 

fruits 



 

Vector of numerical values 

numbers <- c(1, 2, 3) 

# Print numbers 

numbers 

 

Lists 

A list in R can contain many different data types inside it. A list is a collection of data which 

is ordered and changeable. 

 

To create a list, use the list() function: 

Example 

# List of strings 

thislist <- list("apple", "banana", "cherry") 

# Print the list 

Thislist 

 

Access Lists 

You can access the list items by referring to its index number, inside brackets. The first item 

has index 1, the second item has index 2, and so on: 

Example 

thislist <- list("apple", "banana", "cherry") 

thislist[1] 

 

Change Item Value 

To change the value of a specific item, refer to the index number: 

Example 

thislist <- list("apple", "banana", "cherry") 

thislist[1] <- "blackcurrant" 

# Print the updated list 

thislist 

 

List Length 

To find out how many items a list has, use the length() function: 

Example 

thislist <- list("apple", "banana", "cherry") 

length(thislist) 

 

Add List Items 

To add an item to the end of the list, use the append() function: 

Example 

Add "orange" to the list: 

thislist <- list("apple", "banana", "cherry") 

append(thislist, "orange") 



 

 

 

Matrices 

A matrix is a two dimensional data set with columns and rows. 

A column is a vertical representation of data, while a row is a horizontal representation of 

data. 

A matrix can be created with the matrix() function. Specify the nrow and ncol parameters to 

get the amount of rows and columns: 

# Create a matrix 

thismatrix <- matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2) 

# Print the matrix 

thismatrix 

 

You can also create a matrix with strings: 

Example 

thismatrix <- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2) 

thismatrix 

 

Access Matrix Items 

You can access the items by using [ ] brackets. The first number "1" in the bracket specifies 

the row-position, while the second number "2" specifies the column-position: 

Example 

thismatrix <- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2) 

thismatrix[1, 2] 

 

Arrays 

Compared to matrices, arrays can have more than two dimensions. 

We can use the array() function to create an array, and the dim parameter to specify the 

dimensions: 

Example 

# An array with one dimension with values ranging from 1 to 24 

thisarray <- c(1:24) 

thisarray 

 

# An array with more than one dimension 

multiarray <- array(thisarray, dim = c(4, 3, 2)) 

multiarray 

 

Access Array Items 

You can access the array elements by referring to the index position. You can use the [] 

brackets to access the desired elements from an array: 

Example 

thisarray <- c(1:24) 



multiarray <- array(thisarray, dim = c(4, 3, 2)) 

multiarray[2, 3, 2] 

 

Data Frames 

Data Frames are data displayed in a format as a table. 

Data Frames can have different types of data inside it. While the first column can be 

character, the second and third can be numeric or logical. However, each column should have 

the same type of data. 

 

Use the data.frame() function to create a data frame: 

Example 

# Create a data frame 

Data_Frame <- data.frame ( 

  Training = c("Strength", "Stamina", "Other"), 

  Pulse = c(100, 150, 120), 

  Duration = c(60, 30, 45) 

) 

 

# Print the data frame 

Data_Frame 

Summarize the Data 

 

Use the summary() function to summarize the data from a Data Frame: 

Example 

Data_Frame <- data.frame ( 

  Training = c("Strength", "Stamina", "Other"), 

  Pulse = c(100, 150, 120), 

  Duration = c(60, 30, 45) 

) 

Data_Frame 

summary(Data_Frame) 

 

Factors 

Factors are used to categorize data. Examples of factors are: 

    Demography: Male/Female 

    Music: Rock, Pop, Classic, Jazz 

    Training: Strength, Stamina 

 

To create a factor, use the factor() function and add a vector as argument: 

Example 

# Create a factor 

music_genre <- factor(c("Jazz", "Rock", "Classic", "Classic", "Pop", "Jazz", "Rock", "Jazz")) 

# Print the factor 

music_genre 



Result: 

[1] Jazz    Rock    Classic Classic Pop     Jazz    Rock    Jazz 

Levels: Classic Jazz Pop Rock 

 

You can see from the example above that that the factor has four levels (categories): Classic, 

Jazz, Pop and Rock. 

To only print the levels, use the levels() function: 

Example 

music_genre <- factor(c("Jazz", "Rock", "Classic", "Classic", "Pop", "Jazz", "Rock", "Jazz")) 

levels(music_genre) 

Result: 

[1] "Classic" "Jazz"    "Pop"     "Rock"    

 


	Cell Types
	There are technically four cell types: Code, Markdown, Raw NBConvert, and Heading.
	Code Cell
	The contents present in a code cell is treated as statements in a programming language of the current kernel. By default, Jupyter notebook's kernel is in Python so you can write Python statements in a code cell. When you run the statement, its output ...
	Markdown cell provides documentation to the notebook and makes the notebook more attractive. This cell contains all types of formatting features such as making text bold and italic, headers, displaying ordered or unordered list, Bullet lists, Hyperlin...
	The Raw NBConvert cell type is only intended for special use cases when using the nbconvert command line tool. Basically it allows you to control the formatting in a very specific way when converting from a Notebook to another format.
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