
19IT601 - DATA SCIENCE & ANALYTICS

UNIT 2

Introduction to Essential Data Science Packages: Numpy: Numpy Data types, Scipy,

Jupyter, Statsmodels and Pandas Package – Scikit learn, R programming .

Programs : Numpy - Creation of Arrays, Indexing and Slicing Operations, Copy and View

Scipy – Manipulation of mathematical functions using special package, Pandas – Creation

of Series, Creation of DataFrame

Numpy

NumPy, which stands for Numerical Python, is a library consisting of multidimensional

array objects and a collection of routines for processing those arrays. Using NumPy,

mathematical and logical operations on arrays can be performed.

NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can

use it freely.

Why Use NumPy?

In Python we have lists that serve the purpose of arrays, but they are slow to

process.NumPy aims to provide an array object that is up to 50x faster than traditional

Python lists.

The array object in NumPy is called ndarray, it provides a lot of supporting functions that

make working with ndarray very easy.Arrays are very frequently used in data science,

where speed and resources are very important.

Operations using NumPy

Using NumPy, a developer can perform the following operations

 Mathematical and logical operations on arrays.

 Fourier transforms and routines for shape manipulation.

 Operations related to linear algebra. NumPy has in-built functions for linear algebra

and random number generation

Every item in a ndarray takes the same size as the block in the memory. Each element in

ndarray is an object of the data-type object (called dtype).

Arrays

Creating array with numpy

NumPy is used to work with arrays. The array object in NumPy is called ndarray.We can

create a NumPy ndarray object by using the array() function.

Example

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

Output

[12345]

Creating 1-Dimentional, 2-Dimentional and 3-Dimentional Array

 An array that has 0-D arrays as its elements is called uni-dimensional or 1-D

array.These are the most common and basic arrays.

 An array that has 1-D arrays as its elements is called a 2-D array.These are often

used to represent matrix or 2nd order tensors.

 An array that has 2-D arrays (matrices) as its elements is called 3-D array.These are

often used to represent a 3rd order tensor.

Example for Creating 1-D, 2-D, 3-D array

import numpy as np

arr1 = np.array([1, 2, 3, 4, 5]) // One dimentional array

arr2 = np.array([[1, 2, 3], [4, 5, 6]]) //Two dimentional array

arr3 = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) //Three dimentional array

print(“1-D array\n”, arr1)

print(“2-D array \n”, arr2)

print(“3-D array \n”,arr3)

Output

1-D array

[1,2,3,4,5]

2-D array

[1,2,3]

[4.5.6]

3-D array

[1,2,3]

[4,5,6]

[1,2,3]

[4,5,6]

Check Number of Dimensions

NumPy Arrays provides the ndim attribute that returns an integer that tells us how many

dimensions the array have.

Example

import numpy as np

arr1 = np.array([1, 2, 3, 4, 5]) // One dimentional array

arr2 = np.array([[1, 2, 3], [4, 5, 6]]) //Two dimentional array

arr3 = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) //Three dimentional array

print(arr1.dim)

print(arr2.dim)

print(arr3.dim)

Output

1

2

3

Data Types in NumPy

NumPy has several datatypes, and refer to data types with one character, like i for

integers, u for unsigned integers etc.

Below is a list of all data types in NumPy and the characters used to represent them.

i – integer, normally either int64 or int32

b – boolean, true or false

u - unsigned integer

f – float

c - complex float

m - timedelta

M - datetime

O - object

S - string

U - unicode string

V - fixed chunk of memory for other type (void)

The NumPy array object has a property called dtype that returns the data type of the array

Datatype Example

import numpy as np

arr = np.array([1,2,3,4])

print(arr.dtype)

Output

int64

Example-2

import numpy as np

arr = np.array([‘apple’, ‘banana’, ‘Mango’, ‘Cherry’])

print(arr.dtype)

Output

<U6

Slicing arrays

 Slicing in python means taking elements from one given index to another given

index.

 We pass slice instead of index like this: [start:end].

 We can also define the step, like this: [start:end:step].

 If we don't pass start its considered 0

 If we don't pass end its considered length of array in that dimension

 If we don't pass step its considered 1

Example 1

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[1:5])

Output

[2 3 4 5]

Example 2

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[4:])

Output

[5 6 7]

Example -3

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[:4])

Output

[1 2 3 4]

Shape of an Array

The shape of an array is the number of elements in each dimension.

Get the Shape of an Array

NumPy arrays have an attribute called shape that returns a tuple with each index having the

number of corresponding elements.

Example

Print the shape of a 2-D array:

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

print(arr.shape)

The example above returns (2, 4), which means that the array has 2 dimensions, where the

first dimension has 2 elements and the second has 4.

Scipy

SciPy is a free and open-source Python library used for scientific computing and technical

computing.

It is a collection of mathematical algorithms and convenience functions built on the NumPy

extension of Python.

It adds significant power to the interactive Python session by providing the user with high-

level commands and classes for manipulating and visualizing data.

Why use SciPy

 SciPy contains varieties of sub packages which help to solve the most common

issue related to Scientific Computation.

 SciPy package in Python is the most used Scientific library only second to GNU

Scientific Library for C/C++ or Matlab’s.

 Easy to use and understand as well as fast computational power.

 It can operate on an array of NumPy library.

Numpy VS SciPy

Numpy:

Numpy is written in C and use for mathematical or numeric calculation.

It is faster than other Python Libraries

Numpy is the most useful library for Data Science to perform basic calculations.

Numpy contains nothing but array data type which performs the most basic operation like

sorting, shaping, indexing, etc.

SciPy:

SciPy is built in top of the NumPy

SciPy module in Python is a fully-featured version of Linear Algebra while Numpy

containsonly a few features.

Most new Data Science features are available in Scipy rather than Numpy.

Sub-packages of SciPy:

 File input/output – scipy.io

 Special Function – scipy.special

 Linear Algebra Operation – scipy.linalg

 Interpolation – scipy.interpolate

 Optimization and fit – scipy.optimize

 Statistics and random numbers – scipy.stats

 Numerical Integration – scipy.integrate

 Fast Fourier transforms – scipy.fftpack

 Signal Processing – scipy.signal

 Image manipulation – scipy.ndimage

File Input / Output package:

Scipy, I/O package, has a wide range of functions for work with different files format which

are Matlab, Arff, Wave, Matrix Market, IDL, NetCDF, TXT, CSV and binary format.

Special Function package

scipy.special package contains numerous functions of mathematical physics.

SciPy special function includes Cubic Root, Exponential, Log sum Exponential, Lambert,

Permutation and Combinations, Gamma, Bessel, hypergeometric, Kelvin, beta, parabolic

cylinder, Relative Error Exponential, etc..

Linear Algebra with SciPy

Linear Algebra of SciPy is an implementation of BLAS and ATLAS LAPACK libraries.

Performance of Linear Algebra is very fast compared to BLAS and LAPACK.

Linear algebra routine accepts two-dimensional array object and output is also a two-

dimensional array.

Inverse Matrix , Eigenvalues and Eigenvector

Discrete Fourier Transform – scipy.fftpack

DFT is a mathematical technique which is used in converting spatial data into frequency

data.

FFT (Fast Fourier Transformation) is an algorithm for computing DFT

FFT is applied to a multidimensional array.

Frequency defines the number of signal or wavelength in particular time period.

Optimization and Fit in SciPy – scipy.optimize

Optimization provides a useful algorithm for minimization of curve fitting,

multidimensional or scalar and root fitting.

Integration with Scipy – Numerical Integration

When we integrate any function where analytically integrate is not possible, we need to turn

for numerical integration.

SciPy provides functionality to integrate function with numerical integration.

scipy.integrate library has single integration, double, triple, multiple, Gaussian quadrate,

Romberg, Trapezoidal and Simpson’s rules.

Jupyter

Jupyter Notebook is an open-source, web-based interactive environment, which allows you

to create and share documents that contain live code, mathematical equations, graphics,

maps, plots, visualizations, and narrative text.

It integrates with many programming languages like Python, PHP, R, C#, etc.

It was spun off from IPython in 2014 by Fernando Pérez and Brian Granger. Project

Jupyter's name is a reference to the three core programming languages supported by Jupyter,

which are Julia, Python and R, and also a homage to Galileo's notebooks recording the

discovery of the moons of Jupiter.

Dashboard of Jupyter Notebook

It contains 3 tabs namely Files, Running, Clusters

Files Tab

The Files tab is used to display files and folders in the current directory. It also uses an

Upload button through which a file can be uploaded to a notebook server.

Running Tab

The Running tab is used to show currently running notebooks.

Cluster Tab

IPython provides the Cluster Tab. IPython is a parallel computing framework, which is an

extended version of the IPython kernel.

User interface of Jupyter Notebook

When you create a new notebook, the notebook will be presented with the notebook name,

menu bar, toolbar, and an empty code cell.

Notebook name: Notebook name is displayed at the top of the page, next to the Jupyter

logo.

Menu bar: The menu bar presents different options that are used to manipulate the

notebook functions.

Toolbar: The toolbar provides a quick way for performing the most-used operations within

the notebook.

Code cell: A code cell allows you to edit and write a new code.

Components of Jupyter Notebook

There are the following three components of Jupyter Notebook -

The notebook web application: It is an interactive web application for writing and running

the code.The notebook web application allows users to:

 Edit code in the browser with automatic syntax highlighting and indentation.

 Run code on the browser.

 See results of computations with media representations, such as HTML, LaTex, png,

pdf, etc.

 Create and use JavaScript widgets.

 Includes mathematical equations using Markdown cells.

Kernels: Kernels are the separate processes started by the notebook web application that is

used to run a user's code in the given language and return output to the notebook web

application.

In Jupyter notebook kernel is available in the following languages:

 Python

 Julia

 Ruby

 R

 Scala

 node.js

 Go

Notebook documents: Notebook document contains a representation of all content which is

visible in the notebook web application, including inputs and outputs of the computations,

text, mathematical equations, graphs, and images.

Working with cells

Click on the first cell in the notebook to enter in the edit mode. Now you can write the code

in working area. After writing the code, you can run it by pressing the Shift+ Enter key or

directly click on the run button at the top of the screen.

Example

Cell Types

There are technically four cell types: Code, Markdown, Raw NBConvert, and Heading.

Code Cell

The contents present in a code cell is treated as statements in a programming language of the

current kernel. By default, Jupyter notebook's kernel is in Python so you can write Python

statements in a code cell. When you run the statement, its output is displayed below the code.

Output can be presented in the form of text, image, matplotlib plots, or HTML tables.

Markdown cell provides documentation to the notebook and makes the notebook more

attractive. This cell contains all types of formatting features such as making text bold and

italic, headers, displaying ordered or unordered list, Bullet lists, Hyperlinks, tabular contents,

images, etc.

The Raw NBConvert cell type is only intended for special use cases when using

the nbconvert command line tool. Basically it allows you to control the formatting in a very

specific way when converting from a Notebook to another format.

The Heading cell type is no longer supported and will display a dialog that says as much.

Pandas Package

Pandas is an open source Python package that is most widely used for data science/data

analysis and machine learning tasks. It is built on top of another package named Numpy,

which provides support for multi-dimensional arrays.

Pandas is an open-source Python Library providing high-performance data manipulation and

analysis tool using its powerful data structures. The name Pandas is derived from the word

Panel Data – an Econometrics from Multidimensional data.

In 2008, developer Wes McKinney started developing pandas when in need of high

performance, flexible tool for analysis of data.

Python with Pandas is used in a wide range of fields including academic and commercial

domains including finance, economics, Statistics, analytics, etc.

Key Features of Pandas

 Fast and efficient DataFrame object with default and customized indexing.

 Tools for loading data into in-memory data objects from different file formats.

 Data alignment and integrated handling of missing data.

 Reshaping and pivoting of date sets.

 Label-based slicing, indexing and subsetting of large data sets.

 Columns from a data structure can be deleted or inserted.

 Group by data for aggregation and transformations.

 High performance merging and joining of data.

 Time Series functionality.

Why Use Pandas?

 Pandas allows us to analyze big data and make conclusions based on statistical

theories.

 Pandas can clean messy data sets, and make them readable and relevant.

 Relevant data is very important in data science.

Pandas generally provide two data structures for manipulating data, They are:

 Series

 DataFrame

Series

Pandas Series is a one-dimensional labeled array capable of holding data of any type (integer,

string, float, python objects, etc.). The axis labels are collectively called indexes. Pandas

Series is nothing but a column in an excel sheet. Labels need not be unique but must be a

hashable type. Pandas series can be created using list or dictionaries.

Example - Create a simple Pandas Series from a list:

import pandas as pd

a = [1, 7, 2]

myvar = pd.Series(a)

print(myvar)

Output

0 1

1 7

2 2

dtype: int64

Labels

If nothing else is specified, the values are labeled with their index number. First value has

index 0, second value has index 1 etc.This label can be used to access a specified value.

Create Labels

With the index argument, you can name your own labels.

import pandas as pd

a = [1, 7, 2]

myvar = pd.Series(a, index = ["x", "y", "z"])

print(myvar)

Output

x 1

y 7

z 2

dtype: int64

When you have created labels, you can access an item by referring to the label.

Example

Return the value of "y":

print(myvar["y"])

Output

7

Key/Value Objects as Series

We can also use a key/value object, like a dictionary, when creating a Series.

Example
Create a simple Pandas Series from a dictionary:

import pandas as pd

calories = {"day1": 420, "day2": 380, "day3": 390}

myvar = pd.Series(calories)

print(myvar)

Output

Day1 420

Day2 380

Day3 390

Accessing Data from Series with Position

Data in the series can be accessed similar to that in an ndarray.

Example

Retrieve the first element. As we already know, the counting starts from zero for the array,

which means the first element is stored at zeroth position and so on.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the first element

print s[0]

Its output is as follows −

1

Example

Retrieve the first three elements in the Series. If a : is inserted in front of it, all items from that

index onwards will be extracted. If two parameters (with : between them) is used, items

between the two indexes (not including the stop index)

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the first three element

print s[:3]

Its output is as follows −

a 1

b 2

c 3

Retrieve the last three elements

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the last three element

print s[-3:]

Its output is as follows −

c 3

d 4

e 5

Retrieve Data Using Label (Index)

A Series is like a fixed-size dict in that you can get and set values by index label.

Example

Retrieve a single element using index label value.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve a single element

print s['a']

Its output is as follows −

1

DataFrame

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data

structure with labeled axes (rows and columns). A Data frame is a two-dimensional data

structure, i.e., data is aligned in a tabular fashion in rows and columns. Pandas DataFrame

consists of three principal components, the data, rows, and columns.

Create DataFrame

A pandas DataFrame can be created using various inputs like −

 Lists

 dict

 Series

 Numpy ndarrays

 Another DataFrame

Create a DataFrame from two Series:

import pandas as pd

data = {

 "calories": [420, 380, 390],

 "duration": [50, 40, 45]

}

myvar = pd.DataFrame(data)

print(myvar)

Output

 calories duration

0 420 50

1 380 40

2 390 45

Create a DataFrame from Lists

The DataFrame can be created using a single list or a list of lists.

import pandas as pd

data = [1,2,3,4,5]

df = pd.DataFrame(data)

print df

Its output is as follows −

Output

0 1

1 2

2 3

3 4

4 5

Example 2

import pandas as pd

data = [['Alex',10],['Bob',12],['Clarke',13]]

df = pd.DataFrame(data,columns=['Name','Age'])

print df

Its output is as follows −

 Name Age

0 Alex 10

1 Bob 12

2 Clarke 13

Create a DataFrame from Dict of ndarrays / Lists

All the ndarrays must be of same length. If index is passed, then the length of the index

should equal to the length of the arrays.

If no index is passed, then by default, index will be range(n), where n is the array length.

Example 1

import pandas as pd

data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}

df = pd.DataFrame(data)

print df

Its output is as follows −

 Age Name

0 28 Tom

1 34 Jack

2 29 Steve

3 42 Ricky

Let us now create an indexed DataFrame using arrays.

import pandas as pd

data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}

df = pd.DataFrame(data, index=['rank1','rank2','rank3','rank4'])

print df

Its output is as follows −

 Age Name

rank1 28 Tom

rank2 34 Jack

rank3 29 Steve

rank4 42 Ricky

Create a DataFrame from List of Dicts

List of Dictionaries can be passed as input data to create a DataFrame. The dictionary keys

are by default taken as column names.

Example

The following example shows how to create a DataFrame by passing a list of dictionaries.

import pandas as pd

data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]

df = pd.DataFrame(data)

print df

Its output is as follows −

 a b c

0 1 2 NaN

1 5 10 20.0

The following example shows how to create a DataFrame by passing a list of dictionaries and

the row indices.

import pandas as pd

data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]

df = pd.DataFrame(data, index=['first', 'second'])

print df

Its output is as follows −

 a b c

first 1 2 NaN

second 5 10 20.0

Series Basic Functionality

Sr.No. Attribute or Method & Description

1
axes

Returns a list of the row axis labels

2
dtype

Returns the dtype of the object.

3
empty

Returns True if series is empty.

4
ndim

Returns the number of dimensions of the underlying data, by definition 1.

5
size

Returns the number of elements in the underlying data.

6
values

Returns the Series as ndarray.

7
head()

Returns the first n rows.

8
tail()

Returns the last n rows.

Let us now create a Series and see all the above tabulated attributes operation.

Example

import pandas as pd

import numpy as np

#Create a series with 100 random numbers

s = pd.Series(np.random.randn(4))

print s

Its output is as follows −

0 0.967853

1 -0.148368

2 -1.395906

3 -1.758394

dtype: float64

axes

Returns the list of the labels of the series.

import pandas as pd

import numpy as np

#Create a series with 100 random numbers

s = pd.Series(np.random.randn(4))

print ("The axes are:")

print s.axes

Its output is as follows −

The axes are:

[RangeIndex(start=0, stop=4, step=1)]

The above result is a compact format of a list of values from 0 to 5, i.e., [0,1,2,3,4].

empty

Returns the Boolean value saying whether the Object is empty or not. True indicates that the

object is empty.

import pandas as pd

import numpy as np

#Create a series with 100 random numbers

s = pd.Series(np.random.randn(4))

print ("Is the Object empty?")

print s.empty

Its output is as follows −

Is the Object empty?

False

ndim

Returns the number of dimensions of the object. By definition, a Series is a 1D data structure,

so it returns

import pandas as pd

import numpy as np

#Create a series with 4 random numbers

s = pd.Series(np.random.randn(4))

print s

print ("The dimensions of the object:")

print s.ndim

Its output is as follows −

0 0.175898

1 0.166197

2 -0.609712

3 -1.377000

dtype: float64

The dimensions of the object:

1

size

Returns the size(length) of the series.

import pandas as pd

import numpy as np

#Create a series with 4 random numbers

s = pd.Series(np.random.randn(2))

print s

print ("The size of the object:")

print s.size

Its output is as follows −

0 3.078058

1 -1.207803

dtype: float64

The size of the object:

2

values

Returns the actual data in the series as an array.

import pandas as pd

import numpy as np

#Create a series with 4 random numbers

s = pd.Series(np.random.randn(4))

print s

print ("The actual data series is:")

print s.values

Its output is as follows −

0 1.787373

1 -0.605159

2 0.180477

3 -0.140922

dtype: float64

The actual data series is:

[1.78737302 -0.60515881 0.18047664 -0.1409218]

Scikit Learn

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python. It

provides a selection of efficient tools for machine learning and statistical modeling including

classification, regression, clustering and dimensionality reduction via a consistence interface

in Python. This library, which is largely written in Python, is built upon NumPy, SciPy and

Matplotlib.

It was originally called scikits.learn and was initially developed by David Cournapeau as a

Google summer of code project in 2007. Later, in 2010, Fabian Pedregosa, Gael Varoquaux,

Alexandre Gramfort, and Vincent Michel, from FIRCA (French Institute for Research in

Computer Science and Automation),

The functionality that scikit-learn provides include:

 Regression, including Linear and Logistic Regression

 Classification, including K-Nearest Neighbors

 Clustering, including K-Means and K-Means++

 Model selection

 Preprocessing, including Min-Max Normalization

Features

Rather than focusing on loading, manipulating and summarising data, Scikit-learn library is

focused on modeling the data. Some of the most popular groups of models provided by

Sklearn are as follows −

Supervised Learning algorithms − Almost all the popular supervised learning algorithms,

like Linear Regression, Support Vector Machine (SVM), Decision Tree etc., are the part of

scikit-learn.

Unsupervised Learning algorithms − On the other hand, it also has all the popular

unsupervised learning algorithms from clustering, factor analysis, PCA (Principal Component

Analysis) to unsupervised neural networks.

Clustering − This model is used for grouping unlabeled data.

Cross Validation − It is used to check the accuracy of supervised models on unseen data.

Dimensionality Reduction − It is used for reducing the number of attributes in data which

can be further used for summarisation, visualisation and feature selection.

Ensemble methods − As name suggest, it is used for combining the predictions of multiple

supervised models.

Feature extraction − It is used to extract the features from data to define the attributes in

image and text data.

Feature selection − It is used to identify useful attributes to create supervised models.

Estimator API

It is one of the main APIs implemented by Scikit-learn. It provides a consistent interface for a

wide range of ML applications that’s why all machine learning algorithms in Scikit-Learn are

implemented via Estimator API. The object that learns from the data (fitting the data) is an

estimator. It can be used with any of the algorithms like classification, regression, clustering

or even with a transformer, that extracts useful features from raw data.

For fitting the data, all estimator objects expose a fit method that takes a dataset shown as

follows −

estimator.fit(data)

Next, all the parameters of an estimator can be set, as follows, when it is instantiated by the

corresponding attribute.

estimator = Estimator (param1=1, param2=2)

estimator.param1

The output of the above would be 1.

Steps in using Estimator API

Followings are the steps in using the Scikit-Learn estimator API −

Step 1: Choose a class of model

In this first step, we need to choose a class of model. It can be done by importing the

appropriate Estimator class from Scikit-learn.

Step 2: Choose model hyperparameters

In this step, we need to choose class model hyperparameters. It can be done by instantiating

the class with desired values.

Step 3: Arranging the data

Next, we need to arrange the data into features matrix (X) and target vector(y).

Step 4: Model Fitting

Now, we need to fit the model to your data. It can be done by calling fit() method of the

model instance.

Step 5: Applying the model

After fitting the model, we can apply it to new data. For supervised learning, use predict()

method to predict the labels for unknown data. While for unsupervised learning, use predict()

or transform() to infer properties of the data.

R Programming

R is a programming language and software environment for statistical analysis, graphics

representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the

University of Auckland, New Zealand, and is currently developed by the R Development

Core Team. R is freely available under the GNU General Public License.

Creating Variables in R

Variables are containers for storing data values.

R does not have a command for declaring a variable. A variable is created the moment you

first assign a value to it. To assign a value to a variable, use the <- sign. To output (or print)

the variable value, just type the variable name:

Example

name <- "John"

age <- 40

name # output "John"

age # output 40

Basic Data Types

Basic data types in R can be divided into the following types:

 numeric - (10.5, 55, 787)

 integer - (1L, 55L, 100L, where the letter "L" declares this as an integer)

 complex - (9 + 3i, where "i" is the imaginary part)

 character (a.k.a. string) - ("k", "R is exciting", "FALSE", "11.5")

 logical (a.k.a. boolean) - (TRUE or FALSE)

We can use the class() function to check the data type of a variable:

Example

numeric

x <- 10.5

class(x)

integer

x <- 1000L

class(x)

complex

x <- 9i + 3

class(x)

character/string

x <- "R is exciting"

class(x)

logical/boolean

x <- TRUE

class(x)

Output

[1] "numeric"

[1] "integer"

[1] "complex"

[1] "character"

[1] "character"

R Data Structure

 Vectors

 Lists

 Matrices

 Arrays

 Factors

 Data Frame

Vectors

 A vector is simply a list of items that are of the same type.

 To combine the list of items to a vector, use the c() function and separate the items by

a comma.

 In the example below, we create a vector variable called fruits, that combine strings:

Example

Vector of strings

fruits <- c("banana", "apple", "orange")

Print fruits

fruits

Vector of numerical values

numbers <- c(1, 2, 3)

Print numbers

numbers

Lists

A list in R can contain many different data types inside it. A list is a collection of data which

is ordered and changeable.

To create a list, use the list() function:

Example

List of strings

thislist <- list("apple", "banana", "cherry")

Print the list

Thislist

Access Lists

You can access the list items by referring to its index number, inside brackets. The first item

has index 1, the second item has index 2, and so on:

Example

thislist <- list("apple", "banana", "cherry")

thislist[1]

Change Item Value

To change the value of a specific item, refer to the index number:

Example

thislist <- list("apple", "banana", "cherry")

thislist[1] <- "blackcurrant"

Print the updated list

thislist

List Length

To find out how many items a list has, use the length() function:

Example

thislist <- list("apple", "banana", "cherry")

length(thislist)

Add List Items

To add an item to the end of the list, use the append() function:

Example

Add "orange" to the list:

thislist <- list("apple", "banana", "cherry")

append(thislist, "orange")

Matrices

A matrix is a two dimensional data set with columns and rows.

A column is a vertical representation of data, while a row is a horizontal representation of

data.

A matrix can be created with the matrix() function. Specify the nrow and ncol parameters to

get the amount of rows and columns:

Create a matrix

thismatrix <- matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2)

Print the matrix

thismatrix

You can also create a matrix with strings:

Example

thismatrix <- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

thismatrix

Access Matrix Items

You can access the items by using [] brackets. The first number "1" in the bracket specifies

the row-position, while the second number "2" specifies the column-position:

Example

thismatrix <- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)

thismatrix[1, 2]

Arrays

Compared to matrices, arrays can have more than two dimensions.

We can use the array() function to create an array, and the dim parameter to specify the

dimensions:

Example

An array with one dimension with values ranging from 1 to 24

thisarray <- c(1:24)

thisarray

An array with more than one dimension

multiarray <- array(thisarray, dim = c(4, 3, 2))

multiarray

Access Array Items

You can access the array elements by referring to the index position. You can use the []

brackets to access the desired elements from an array:

Example

thisarray <- c(1:24)

multiarray <- array(thisarray, dim = c(4, 3, 2))

multiarray[2, 3, 2]

Data Frames

Data Frames are data displayed in a format as a table.

Data Frames can have different types of data inside it. While the first column can be

character, the second and third can be numeric or logical. However, each column should have

the same type of data.

Use the data.frame() function to create a data frame:

Example

Create a data frame

Data_Frame <- data.frame (

 Training = c("Strength", "Stamina", "Other"),

 Pulse = c(100, 150, 120),

 Duration = c(60, 30, 45)

)

Print the data frame

Data_Frame

Summarize the Data

Use the summary() function to summarize the data from a Data Frame:

Example

Data_Frame <- data.frame (

 Training = c("Strength", "Stamina", "Other"),

 Pulse = c(100, 150, 120),

 Duration = c(60, 30, 45)

)

Data_Frame

summary(Data_Frame)

Factors

Factors are used to categorize data. Examples of factors are:

 Demography: Male/Female

 Music: Rock, Pop, Classic, Jazz

 Training: Strength, Stamina

To create a factor, use the factor() function and add a vector as argument:

Example

Create a factor

music_genre <- factor(c("Jazz", "Rock", "Classic", "Classic", "Pop", "Jazz", "Rock", "Jazz"))

Print the factor

music_genre

Result:

[1] Jazz Rock Classic Classic Pop Jazz Rock Jazz

Levels: Classic Jazz Pop Rock

You can see from the example above that that the factor has four levels (categories): Classic,

Jazz, Pop and Rock.

To only print the levels, use the levels() function:

Example

music_genre <- factor(c("Jazz", "Rock", "Classic", "Classic", "Pop", "Jazz", "Rock", "Jazz"))

levels(music_genre)

Result:

[1] "Classic" "Jazz" "Pop" "Rock"

	Cell Types
	There are technically four cell types: Code, Markdown, Raw NBConvert, and Heading.
	Code Cell
	The contents present in a code cell is treated as statements in a programming language of the current kernel. By default, Jupyter notebook's kernel is in Python so you can write Python statements in a code cell. When you run the statement, its output ...
	Markdown cell provides documentation to the notebook and makes the notebook more attractive. This cell contains all types of formatting features such as making text bold and italic, headers, displaying ordered or unordered list, Bullet lists, Hyperlin...
	The Raw NBConvert cell type is only intended for special use cases when using the nbconvert command line tool. Basically it allows you to control the formatting in a very specific way when converting from a Notebook to another format.
	The Heading cell type is no longer supported and will display a dialog that says as much.
	Example

