
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and
Data Science

Course Name – Big Data Analytics
III Year / V Semester

Unit 2 – Data Science using Python

Topic - R Programming

2/8R Programming / Big Data Analytics / AD / SNSCE

R Programming

Matrices
A matrix is a two dimensional data set with columns and rows.
A column is a vertical representation of data, while a row is a horizontal representation of data.
A matrix can be created with the matrix() function. Specify the nrow and ncol parameters to get the
amount of rows and columns:

Create a matrix
thismatrix <- matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2)
Print the matrix
thismatrix

You can also create a matrix with strings:
Example
thismatrix <- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)
thismatrix

3/8R Programming / Big Data Analytics / AD / SNSCE

R Programming

Access Matrix Items
You can access the items by using [] brackets. The first number "1" in the bracket specifies the row-
position, while the second number "2" specifies the column-position:

Example
thismatrix <- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)
thismatrix[1, 2]

Arrays
Compared to matrices, arrays can have more than two dimensions.
We can use the array() function to create an array, and the dim parameter to specify the dimensions:

Example
An array with one dimension with values ranging from 1 to 24
thisarray <- c(1:24)
thisarray

4/8R Programming / Big Data Analytics / AD / SNSCE

R Programming

Access Array Items
You can access the array elements by referring to the index position. You can use the [] brackets to
access the desired elements from an array:

Example
thisarray <- c(1:24)
multiarray <- array(thisarray, dim = c(4, 3, 2))
multiarray[2, 3, 2]

5/8R Programming / Big Data Analytics / AD / SNSCE

R Programming

Data Frames
Data Frames are data displayed in a format as a table.
Data Frames can have different types of data inside it. While the first column can be character, the
second and third can be numeric or logical. However, each column should have the same type of data.

Use the data.frame() function to create a data frame:
Example
Create a data frame
Data_Frame <- data.frame (

Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)

)

6/8R Programming / Big Data Analytics / AD / SNSCE

R Programming

Factors
Factors are used to categorize data. Examples of factors are:

Demography: Male/Female
Music: Rock, Pop, Classic, Jazz
Training: Strength, Stamina

To create a factor, use the factor() function and add a vector as argument:
Example
Create a factor
music_genre <- factor(c("Jazz", "Rock", "Classic", "Classic", "Pop", "Jazz", "Rock", "Jazz"))
Print the factor
music_genre
Result:
[1] Jazz Rock Classic Classic Pop Jazz Rock Jazz
Levels: Classic Jazz Pop Rock

7/8R Programming / Big Data Analytics / AD / SNSCE

R Programming

You can see from the example above that that the factor has four levels (categories): Classic, Jazz, Pop
and Rock.
To only print the levels, use the levels() function:
Example
music_genre <- factor(c("Jazz", "Rock", "Classic", "Classic", "Pop", "Jazz", "Rock", "Jazz"))
levels(music_genre)
Result:
[1] "Classic" "Jazz" "Pop" "Rock"

8/8R Programming / Big Data Analytics / AD / SNSCE

THANK YOU

