



## SNS COLLEGE OF ENGINEERING

An Autonomous Institution Coimbatore-107

# 19IT503-INTERNET OF THINGS UNIT-2 FUNDAMENTAL MECHANISMS & KEY TECHNOLOGIES

TOPIC: IoT Enabling Technologies- WSN, Cloud computing, Big data Analytics, communication protocols, embedded systems





# IoT Enabling Technologies

Wireless Sensor Network



Cloud Computing



Big Data Analytics



Communication Protocols



Embedded Systems

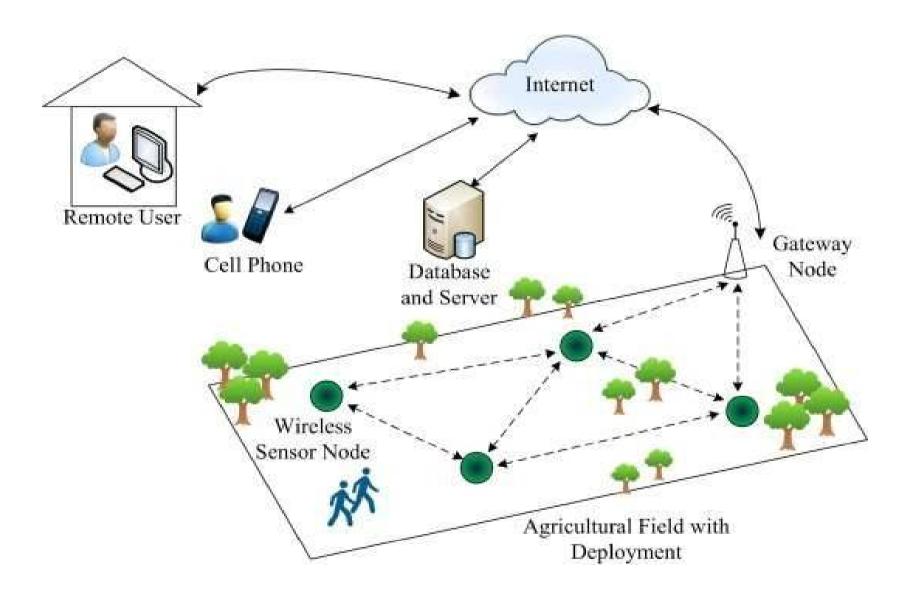




#### 1. Wireless Sensor Network



 Distributed Devices with sensors used to monitor the environmental and physical conditions


Or

- It is a network formed by large no. of sensor nodes to detect light, heat, pressure, etc.,
- i.e. used to monitor environmental and physical conditions.
- Each node can have several sensors attached to it.
- Each node can also acts as a routers
- Coordinator collects data from all nodes
- Coordinator acts as gateway that connects WSN to the internet.











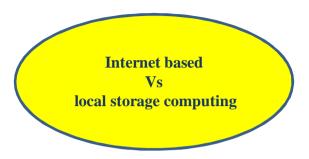


## **Examples of WSNs**

- Indoor Air Quality Monitoring system
- Weather Monitoring System
- Soil Moisture Monitoring System
- Survelliance Systems
- Health Monitoring Systems

#### **Protocols used**

WSNs are enabled by wireless communication protocols such as **IEEE 802.15.4** 


**Zigbee** is one of the most popular wireless technology used by WSNs. Zigbee specifications are based on **IEEE802.15.4** which is used for low powered devices.

Data rate: up to 250KBps. Range: upto 100 Meters





#### 2. Cloud Computing

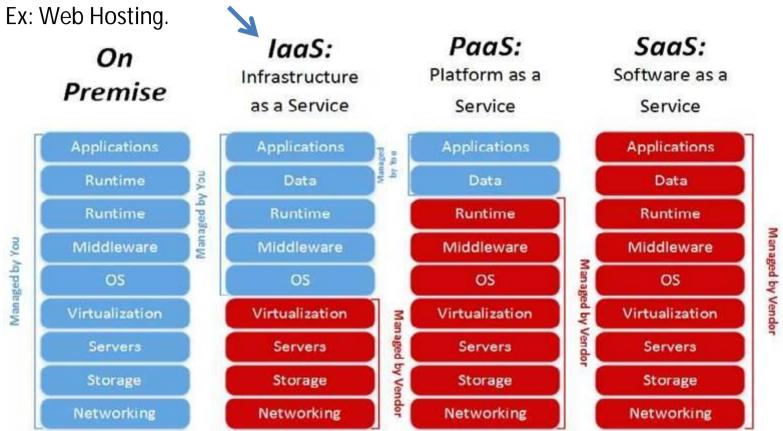


Deliver applications and services over internet

Provides computing, networking and storage resources on demand

Cloud Computing is a way of making use of virtual computer world wide using the same personalized experience.

#### Types of Cloud computing services


- 1. laaS(Infrastructure as a Service),
- 2. PaaS(Platform as a Service and
- 3. SaaS(Software as a Services)





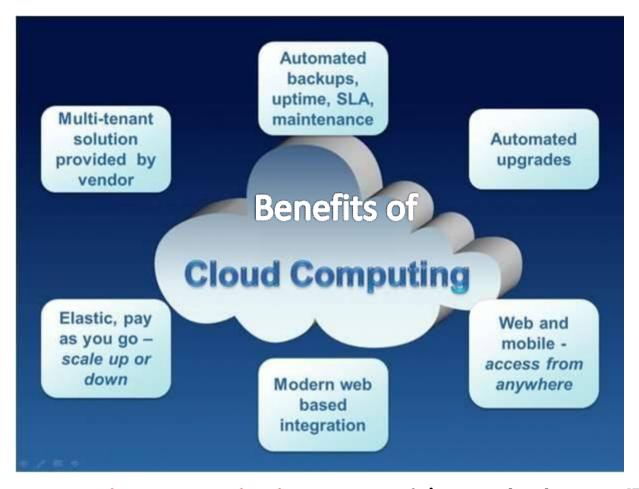


any desired applications. (i.e Virtual machines + virtual storage)



• **Paas**: Clients can install, build and modify or control applications.

Ex: App cloud, Google App Engine


• **Saas**: Clients can access and use software at remote location using a web browser.

Ex: Google documents



#### **Benefits of Cloud Computing**





- 1. It doesn't require you to maintain or manage it(no need to have an IT expert).
- 2. Effectively infinite size, so no need to worry about running out of capacity.
- You can access cloud based applications and services from anywhere( Device independent).





## 2. Big Data Analytics

 Collection of data whose volume, velocity or variety is too large and difficult to store, manage, process and analyze the data using traditional databases.

## **Big data Analytics involves**

Correcting Removing Replacing Data cleansing
Data munging (Data Wrangling)
Data Processing and
Data Visualization

Converting data from one format to other





## Big Data Analytics

#### Characteristics of Big Data is 3V

## Variety Includes different types of data

Structured

Unstructured

Semi-Structured

All of above

-text, audio, video

## **Velocity** Refers to speed at which data

is processed

Batch

Real-time

Streams

## Volume refers to the amount of data

Terabyte

Records

Transactions

**Files** 

Tables

Acc to IBM in 2012: **2.5 Billion GB** data was generated **everyday!** Forbes states: in 2020, **1.7 MB** of **new information** is will be created





# Examples

- Lots of data is being collected and warehoused
  - Web data, e-commerce
  - purchases at department/ grocery stores
  - Bank/Credit Card transactions
  - Social Network











#### 3. Communication Protocols

- Backbone of IOT system
- •Allows devices to exchange data over networks.
- Define data exchange formats
  - Data encoding
  - Addressing Schemes
  - Routing of packets from sources to destination

#### • Other Functions

- Sequence control(ordering data packets)
- Flow control(controlling transfer rate)
- Retransmission of lost packets





## 4. Embedded Systems

- •A microcontroller-based, software-driven, reliable, realtime control system, designed to perform a specific task..
  - •It can be thought of as a computer hardware system having software embedded in it.
  - An embedded system can be either an independent system or a part of a large system.

**Embedded Systems found in..** 



What is the difference between a PC and an Embedded system?





## **Key Components**

- Microprocessor or micro controller
- Memory (RAM, ROM ect.)
- Storage (Flash Memory)
- Networking units(Ethernet, Wifi adaptors)
- I/O units ( Keyboard, display ect)

#### **Some Embedded systems have**

- DSP(Digital Signal Processor)
- Graphics Processor
- App Specific Processor

#### Embedded systems run embedded OS

Ex: RTOS(Real Time OS)(like symbian, Vxworks, Windows embedded compact ect.)





## **Thank You**