SNS COLLEGE OF ENGINEERING

(Autonomous)
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DHGIRAL PRINCITRE AND SYSMEMDESMGN

Guess Today's Topic????

- Overview of Counters
- Characteristics of Counters
- Ripple Up Counter
- Ripple Counter with Waveforms
- Ripple Down Counter
- Self-stopping Counter
- Frequency Division using Counters
- Using Counter ICs
- Magnitude Comparators
- Troubleshooting Equipment
- Troubleshooting Hints

Ms.E.DIVYA , AP/ECE / DIGITAL CIRCUITS / Unit 3/ Counters
-Counter-by definition

- One input (clock)
- Outputs follow defined sequence
-Common tasks of counter
- Count up or down
- Increment or decrement count
- Sequence events
- Divide frequency
- Address memory
- As memory

CHARACTERISTICS OF COUNTERS

-Number of bits (4-bit, 8-bit, etc.)

- Maximum count
-4 bit $=2^{4}=0000$ to 1111 in binary
-8 bit $=2^{8}=00000000$ to 11111111 in binary
- Modulus of counter-number of states
- Decade counter
- 4-bit
- 8-bit
- Up or down counter
- Asynchronous or synchronous counter
-Presettable counter
-Self-stopping counter

RIPPLE COUNTER

Binary Output
Clock Input

This 4-bit counter has 16 states and will count from binary 0000 through 1111 and then reset back to 0000.
The counter has a modulus of 16 .

RIPPLE COUNTER WITH WAVEFORMS

DECADE COUNTER

Binary Output

Count is at 1001.
Next clock pulse will increment counter for a short time to 1010 which will activate the NAND gate and reset the counter to 0000.

DOWN COUNTER

Pulse 5

SELF-STOPPING DOWN COUNTER

This is a 3-bit down counter.
The 1s FF is in TOGGLE mode when counting ($\mathrm{J} \& \mathrm{~K}=1$).
The 1s FF switches to HOLD mode when the J and K inputs are forced LOW by the OR gate when the count decrements to 000. The count stops at 000.

USED FOR FREQUENCY COUNTER DIVISION

USING THE 7493 COUNTER IC

- Counters are available in IC form.
- Either ripple (7493 IC) or synchronous (74192 IC) counters are available.

A magnitude comparator is a combinational logic device that compares the value of two binary numbers and responds with one of three outputs ($A=B$ or $A>B$ or $A<B$)

TROUBLESHOOTING EQUIPMENT

- Logic Probe
- Logic Pulser
- Logic Clip (logic monitor)
- Digital IC Tester
- DMM/Logic Probe
- DMM or VOM
- Dual-trace Oscilloscope
- Logic Analyzer

SIMPLE TROUBLESHOOTING HINTS

- Feel top of IC to determine if it is hot
- Look for broken connections, signs of excessive heat
- Smell for overheating

Check power source
Trace path of logic through circuit

- Know the normal operation of the circuit

Thank

