SNS COLLEGE OF ENGINEERING

(Autonomous)
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
DIGITAL PRINCIPLLES AND SYSTEM DESIGN

Guess Today’s Topic????

Counters

- Introduction: Counters
- Asynchronous (Ripple) Counters
- Asynchronous Counters with MOD number $<2^{n}$
- Asynchronous Down Counters
- Cascading Asynchronous Counters
- Synchronous (Parallel) Counters
- Up/Down Synchronous Counters
- Designing Synchronous Counters
- Decoding A Counter
- Counters with Parallel Load

Introduction: Counters

- Counters are circuits that cycle through a specified number of states.
- Two types of counters:
* synchronous (parallel) counters
* asynchronous (ripple) counters
- Ripple counters allow some flip-flop outputs to be used as a source of clock for other flip-flops.
- Synchronous counters apply the same clock to all flip-flops.

Asynchronous (Ripple) Counters

- Asynchronous counters: the flip-flops do not change states at exactly the same time as they do not have a common clock pulse.
- Also known as ripple counters, as the input clock pulse "ripples" through the counter - cumulative delay is a drawback.
- n flip-flops \rightarrow a MOD (modulus) 2^{n} counter. (Note: A MOD- x counter cycles through x states.)
- Output of the last flip-flop (MSB) divides the input clock frequency by the MOD number of the counter, hence a counter is also a frequency divider.

Asynchronous (Ripple) Counters

- Example: 2-bit ripple binary counter.
- Output of one flip-flop is connected to the clock in of the next more-significant flip-flop.

Timing diagram $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \ldots$

Asynchronous (Ripple) Counters

- Example: 3-bit ripple binary counter.

Asynchronous (Ripple) Counters

- Propagation delays in an asynchronous (rippleclocked) binary counter.
- If the accumulated delay is greater than the clock pulse, some counter states may be misrepresented!

Asynchronous (Ripple) Counters

- Example: 4-bit ripple binary counter (negative-edge triggered).

Asyn. Counters with MOD no. $<2^{n}$ SE

- States may be skipped resulting in a truncated sequence.
- Technique: force counter to recycle before going through all of the states in the binary sequence.
- Example: Given the following circuit, determine the counting sequence (and hence the modulus no.)

All J, K inputs are 1 (HIGH).

Asyn. Counters with MOD no. < $2^{\text {n }}$

- Example (cont'd):

All J, K inputs are 1 (HIGH).

MOD-6 counter produced by clearing (a MOD-8 binary counter) when count of six (110) occurs.

- Example (cont'd): Counting sequence of circuit (in CBA order).

Counter is a MOD-6 counter.

Asyn. Counters with MOD no. < $2^{\text {n }}$

- Exercise: How to construct an asynchronous MOD-5 counter? MOD-7 counter? MOD-12 counter?
- Question: The following is a MOD-? counter?

Asyn. Counters with MOD no. < $2^{\text {n }}$

- Decade counters (or BCD counters) are counters with 10 states (modulus-10) in their sequence. They are commonly used in daily life (e.g.: utility meters, odometers, etc.).
- Design an asynchronous decade counter.

Asyn. Counters with MOD no. < $2^{\text {n }}$

- Asynchronous decade/BCD counter (cont'd).

\qquad

Asynchronous Down Counters

- So far we are dealing with up counters. Down counters, on the other hand, count downward from a maximum value to zero, and repeat.
- Example: A 3-bit binary (MOD-2 ${ }^{3}$) down counter.

3-bit binary
up counter

3-bit binary down counter

Asynchronous Down Counters

- Example: A 3-bit binary (MOD-8) down counter.

Cascading Asynchronous Counters SiE

- Larger asynchronous (ripple) counter can be constructed by cascading smaller ripple counters.
- Connect last-stage output of one counter to the clock input of next counter so as to achieve highe modulus operation.
- Example: A modulus-32 ripple counter constructed from a modulus-4 counter and a modulus-8 counter.

Cascading Asynchronous Counters

- Example: A 6-bit binary counter (counts from 0 to 63) constructed from two 3-bit counters.

Cascading Asynchronous Counters

- If counter is a not a binary counter, requires additional output.
- Example: A modulus-100 counter using two deca counters.

$T C=1$ when counter recycles to 0000

Synchronous (Parallel) Counters

- Synchronous (parallel) counters: the flip-flops are clocked at the same time by a common clock pulse.
- We can design these counters using the sequential logic design process (covered in Lecture \#12).
- Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Present state		Next state			Flip-flop inputs		
	A_{1}	A_{0}		A_{1}^{+}	$A_{0}{ }^{+}$		$T A_{1}$
0	0		0	1		0	1
0	1		1	0		1	1
1	0		1	1		0	1
1	1		0	0		1	1

- Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Present state		Next state		Flip-flop inputs		$T A_{1}=A_{0}$
\boldsymbol{A}_{1}	\boldsymbol{A}_{0}	$\mathrm{A}_{1}{ }^{+}$	$\mathrm{A}_{0}{ }^{+}$	TA ${ }_{1}$	TA A_{0}	
0	0	0	1	0	1	
0	1	1	0	1	1	$T A_{0}=1$
1	0	1	1	0	1	
1	1	0	0	1	1	

- Example: 3-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J, K inputs).

- Example: 3-bit synchronous binary counter (cont'd).

$$
T A_{2}=A_{1} \cdot A_{0} \quad T A_{1}=A_{0} \quad T A_{0}=1
$$

Synchronous (Parallel) Counters

- Note that in a binary counter, the $\mathrm{n}^{\text {th }}$ bit (shown underlined) is always complemented whenever

$$
\begin{array}{ll}
& \underline{0} 11 \ldots . .11 \rightarrow \underline{100 \ldots 00} \\
\text { or } & \underline{111 \ldots . .11} \rightarrow \underline{000 \ldots . . .00}
\end{array}
$$

- Hence, X_{n} is complemented whenever

$$
X_{n-1} X_{n-2} \ldots X_{1} X_{0}=11 \ldots 11
$$

- As a result, if T flip-flops are used, then

$$
T X_{n}=X_{n-1} \cdot X_{n-2} \cdot \ldots \cdot X_{1} \cdot X_{0}
$$

- Example: 4-bit synchronous binary counter.

$$
\begin{aligned}
& T A_{3}=A_{2} \cdot A_{1} \cdot A_{0} \\
& T A_{2}=A_{1} \cdot A_{0} \\
& T A_{1}=A_{0} \\
& T A_{0}=1
\end{aligned}
$$

- Example: Synchronous decade/BCD counter.

- Example: Synchronous decade/BCD counter (cont'd).

$$
\begin{aligned}
& T_{0}=1 \\
& T_{1}=Q_{3} \cdot Q_{0} \\
& T_{2}=Q_{1} \cdot Q_{0} \\
& T_{3}=Q_{2} \cdot Q_{1} \cdot Q_{0}+Q_{3} \cdot Q_{0}
\end{aligned}
$$

Ms.E.DIVYA , AP/ECE / DIGITAL CIRCUITS / Unit 3/ Counters

Up/Down Synchronous Counters

- Up/down synchronous counter: a bidirectional counter that is capable of counting either up or down.
- An input (control) line Up/Down (or simply Up) specifies the direction of counting.
- Up/ $\overline{\text { Down }}=1 \rightarrow$ Count upward
* Up/ $\overline{\text { Down }}=0 \rightarrow$ Count downward
- Example: A 3-bit up/down synchronous binary counter.

Clock pulse	Up	Q_{2}	Q_{1}	Q_{0}	Down
0	$\stackrel{\rightharpoonup}{C}$	0	0	0	\checkmark
1	1	0	0	1	3
2	4	0	1	0	3
3	4	0	1	1	3
4	5	1	0	0	3
5	$\frac{1}{4}$	1	0	1	\bigcirc
6	5	1	1	0	7
7	\square	1	1	1	3

$T Q_{0}=1$
$T Q_{1}=\left(Q_{0} \cdot U p\right)+\left(Q_{0} \cdot U p^{\prime}\right)$
$T Q_{2}=\left(Q_{0} \cdot Q_{1} \cdot U p\right)+\left(Q_{0}^{\prime}: Q_{1}: U p^{\prime}\right)$

$$
\begin{array}{ll}
\text { Up counter } & \text { Down counter } \\
T Q_{0}=1 & T Q_{0}=1 \\
T Q_{1}=Q_{0} & T Q_{1}=Q_{0}^{\prime} \\
T Q_{2}=Q_{0} \cdot Q_{1} & T Q_{2}=Q_{0} \cdot \cdot Q_{1}^{\prime}
\end{array}
$$

Up/Down Synchronous Counters

- Example: A 3-bit up/down synchronous binary counter (cont'd).

$$
\begin{aligned}
& T Q_{0}=1 \\
& T Q_{1}=\left(Q_{0} \cdot U p\right)+\left(Q_{0}^{\prime} \cdot U p^{\prime}\right) \\
& T Q_{2}=\left(Q_{0} \cdot Q_{1} \cdot U p\right)+\left(Q_{0}^{\prime} \cdot Q_{1}^{\prime} \cdot U p^{\prime}\right)
\end{aligned}
$$

Ms.E.DIVYA , AP/ECE / DIGITAL CIRCUITS / Unit 3/ Counters

- Covered in Lecture \#12.
- Example: A 3-bit Gray code counter (using JK flip-flops).

Present state			Next state			Flip-flop inputs					
Q_{2}	Q_{1}	Q_{0}	$Q_{2}{ }^{+}$	$Q_{1}{ }^{+}$	$Q_{0}{ }^{+}$	$J Q_{2}$	$K Q_{2}$	$J Q_{1}$	$K Q_{1}$	$J Q_{0}$	$K Q_{0}$
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	0	1	X	X	0	0	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	0	0	0	X	1	0	X	0	X
1	0	1	1	0	0	X	0	0	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	1	0	1	X	0	X	1	X	0

- 3-bit Gray code counter: flip-flop inputs.

- 3-bit Gray code counter: logic diagram.

$$
\begin{array}{lll}
J Q_{2}=Q_{1} \cdot Q_{0}^{\prime}{ }^{\prime} & J Q_{1}=Q_{2}^{\prime} \cdot Q_{0} & J Q_{0}=\left(Q_{2} \oplus Q_{1}\right)^{\prime} \\
K Q_{2}=Q_{1}^{\prime} \cdot Q_{0}^{\prime} & K Q_{1}=Q_{2} \cdot Q_{0} & K Q_{0}=Q_{2} \oplus Q_{1}
\end{array}
$$

Decoding A Counter

- Decoding a counter involves determining which state in the sequence the counter is in.
- Differentiate between active-HIGH and active-LOW decoding.
- Active-HIGH decoding: output HIGH if the counter is in the state concerned.
- Active-LOW decoding: output LOW if the counter is in the state concerned.
- Example: MOD-8 ripple counter (active-HIGH decoding).

HIGH only on count of $A B C=000$

HIGH only on count of $A B C=001$

HIGH only on count of $A B C=010$

HIGH only on count of $A B C=111$

- Example: To detect that a MOD-8 counter is in state 0 (000) or state 1 (001).

HIGH only on
count of $A B C=000$ or $A B C=001$

- Example: To detect that a MOD-8 counter is in the odd states (states $1,3,5$ or 7), simply use C.

HIGH only on count of odd states

Counters with Parallel Load

- Counters could be augmented with parallel load capability for the following purposes:
* To start at a different state
* To count a different sequence
* As more sophisticated register with increment/decrement functionality.

Counters with Parallel Load

- Different ways of getting a MOD-6 counter:

(c) Binary states $\mathbf{1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5}$.

Inputs have no effect
(b) Binary states 0,1,2,3,4,5.

(d) Binary states $3,4,5,6,7,8$.

Counters with Parallel Load

- 4-bit counter with parallel load.

Clear	CP	Load	Count	Function
0	X	X	X	Clear to 0
1	X	0	0	No change
1	\uparrow	1	X	Load inputs
1	\uparrow	0	1	Next state

Ring Counters

- One flip-flop (stage) for each state in the sequence.
- The output of the last stage is connected to the D input of the first stage.
- An n-bit ring counter cycles through n states.
- No decoding gates are required, as there is an output that corresponds to every state the counter is in.
- Example: A 6-bit (MOD-6) ring counter.

Clock	Q_{0}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}
$\longrightarrow 0$	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
5	0	0	0	0	0	1

- The complement of the output of the last stage is connected back to the D input of the first stage.
- Also called the twisted-ring counter.
- Require fewer flip-flops than ring counters but more flip-flops than binary counters.
- An n-bit Johnson counter cycles through $2 n$ states.
- Require more decoding circuitry than ring counter but less than binary counters.
- Example: A 4-bit (MOD-8) Johnson counter.

Clock	Q_{0}	Q_{1}	Q_{2}	Q_{3}
$\longrightarrow 0$	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

Ms.E.DIVYA , AP/ECE / DIGITAL CIRCUITS / Unit 3/ Counters

- Decoding logic for a 4-bit Johnson counter.

Clock	A	B	C	D	Decoding
$\longrightarrow 0$	0	0	0	0	$A^{\prime} \cdot D^{\prime}$
1	1	0	0	0	$A^{\prime} \cdot B^{\prime}$
2	1	1	0	0	$B . C^{\prime}$
3	1	1	1	0	$C . D^{\prime}$
4	1	1	1	1	$A^{\prime} \cdot D^{\prime}$
5	0	1	1	1	$A^{\prime} . B$
6	0	0	1	1	$B^{\prime} . C$
7	0	0	0	1	$C^{\prime} . D^{\prime}$

Thank

