SNS COLLEGE OF ENGINEERING

Sequential Circuits

Flip-Flops

Flip-Flops

- Latches are "transparent" (= any change on the inputs is seen at the outputs immediatel when $\mathrm{C}=1$).
- This causes synchronization problems.

Solution: use latches to create flip-flops that can respond (update) only on specific times (instead of any time).

- Types: RS flip-flop and D flip-flop

Master-Slave FF configuration using SR latches

Ms.E.DIVYA, AP/ECE / DIGITAL CIRCUITS / Unit 4/ sequential circuits

Master-Slave FF configuration using SR latches (cont.)

S	R	$C L K$	Q	Q^{\prime}	
0	0	1	Q_{0}	Q_{0}^{\prime}	Store
0	1	1	0	1	Reset
1	0	1	1	0	Set
1	1	1	1	1	Disallowed
X	X	0	Q_{0}	Q_{0}^{\prime}	Store

-When $C=1$, master is enabled and stores new data, slave stores old data.

- When $C=0$, master's state passes to enabled slave, master not sensitive to new data (disabled).

Ms.E.DIVYA, AP/ECE / DIGITAL CIRCUITS / Unit 4/ sequential circuits

D Flip-Flop

Ms.E.DIVYA, AP/ECE / DIGITAL CIRCUITS / Unit 4/ sequential circuits

Characteristic Tables

- Defines the logical properties of a flip-flop (sl as a truth table does for a logic gate).
- $\mathrm{Q}(\mathrm{t})$ - present state at time t
- $Q(t+1)$ - next state at time $\mathrm{t}+1$

Characteristic Tables (cont.)

SR Flip-Flop
$S \quad R \quad Q(t+1) \quad$ Operation
$0 \quad 0 \quad Q(t) \quad$ No change/Hold
01
0 Reset Set
1 ? Undefined/Invalid

Characteristic Tables (cont.)

D Flip-Flop Timing Parametersid

Setup time
Ms.E.DIVYA, AP/ECE / DIGITAL CIRCUITS / Unit 4/ sequential circuits

Sequential Circuit Analysis

- Analysis: Consists of obtaining a suitable description that demonstrates the time sequence of inputs, outputs, and states.
- Logic diagram: Boolean gates, flip-flops (of any kind), and appropriate interconnections.
- The logic diagram is derived from any of the following:
- Boolean Equations (FF-Inputs, Outputs)
- State Table
- State Diagram

Example

- Input: $x(t)$
- Output: $y(t)$
- State:
($\mathrm{A}(\mathrm{t}), \mathrm{B}(\mathrm{t})$)
- What is the Output

What is the Next State

Example (continued)

- Boolean equations the functions:
$-A(t+1)=A(t) x(t)$
$\mathrm{B}(\mathrm{t}) \mathrm{x}(\mathrm{t})$
$-B(t+1)=A^{\prime}(t) x(t)$
$-\mathrm{y}(\mathrm{t})=\mathrm{x}^{\prime}(\mathrm{t})(\mathrm{B}(\mathrm{t})+\mathrm{A}(\mathrm{t}))$

State Table Characteristics

- State table - a multiple variable table with the following four sections:
- Present State - the values of the state variables for each allowed state.
- Input - the input combinations allowed.
- Next-state - the value of the state at time ($\mathrm{t}+1$) based on the present state and the input.
- Output - the value of the output as a function of the present state and (sometimes) the input.
From the viewpoint of a truth table:
- the inputs are Input, Present State
- and the outputs are Output, Next State

Example: State Table

- The state table can be filled in using the next state and output equations:
- $A(t+1)=A(t) x(t)+B(t) x(t)$
- $B(t+1)=\bar{A}(t) \times(t) ;$
$-y(t)=\bar{x}(t)(B(t)+A(t))$

Present State	Input	Next State	Output
$\mathbf{A}(\mathrm{t}) \mathbf{B}(\mathrm{t})$	$\mathbf{x}(\mathbf{t})$	$\mathbf{A}(\mathbf{t}+1) \mathbf{B}(\mathbf{t}+1)$	$\mathrm{y}(\mathrm{t})$
0 0	0	$0 \quad 0$	0
0	1	0	0
01	0	0	1
01	1	11	0
10	0	0	1
10	1	10	0
11	0	0	1
11	1	10	0

State Diagrams

- The sequential circuit function can be represented in graphica form as a state diagram with the following components:
- A circle with the state name in it for each state
- A directed arc from the Present State to the Next State for each state transition
- A label on each directed arc with the Input values which causes the state transition, and
- A label:
- On each circle with the output value produced, or
- On each directed arc with the output value produced.

Example: State Diagram

- Diagram gets confusing for large circuits
- For small circuits, usually easier to understand than the state table

Ms.E.DIVYA, AP/ECE / DIGITAL CIRCUITS / Unit 4/ sequential circuits

