

 SNS COLLEGE OF ENGINEERING
 Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING-(IOT Including Cyber Security

&BCT)

COURSE NAME : 19ITT201- DATA
STRUCTURES

II YEAR / III SEMESTER

Unit 1- LINEAR STRUCTURES AND TREES

Topic 4 : Linked List Based Implementation
08/25/22 1/XLINEAR STRUCTURES AND TREES / 19ITT201 - DATA STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

Problem

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

Traversal

Elements or nodes traversal is difficult in linked list. We can not

randomly access any element as we do in array by index. For

example if we want to access a node at position n then we have to

traverse all the nodes before it. So, time required to access a node is

large.

Reverse Traversing

In linked list reverse traversing is really difficult. In case of

doubly linked list its easier but extra memory is required for back

pointer hence wastage of memory.

2/18

https://www.thecrazyprogrammer.com/2015/09/doubly-linked-list-in-c-and-cpp.html

 Linked List Based Implementation

Define Linked List

A linked list is a linear data structure, in which the elements are not stored

at contiguous memory locations.

(Or) A linked list is a sequence of data structures, which are connected

together via links.

The elements in a linked list are linked using pointers as shown in the

below

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE 3/13

Linked List Based Implementation –Cont..

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

Types of Linked List

Following are the various types of linked list.

Simple or Singly Linked List − Item navigation is forward

only.

Doubly Linked List − Items can be navigated forward and

backward.

Circular Linked List − Last item contains link of the first

element as next and the first element has a link to the last

element as previous.

4/13

Linked List Based Implementation –Cont..

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

Operations on linked list

1.Creation of a list

2.Insertion of a list

3.Modification of a node

4.Deletion of node

5.Traversal of a list

5/13

Singly Linked List Based Implementation

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

We also created a simple linked list with 3 nodes and
discussed linked list traversal.
1.Creation of list

A linked list node
struct Node
{
 int data;
 struct Node *next;
};

6/13

Singly Linked List Based Implementation

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

In this post, methods to insert a new node in linked list are

discussed. A node can be added in three ways

1) At the front of the linked list

2) After a given node.

3) At the end of the linked list.

7/13

Singly Linked List Based Implementation –Cont..
At the front of the linked list

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

For example, if the given Linked List is 10->15->20->25 and we

add an item 5 at the front, then the Linked List becomes 5->10-

>15->20->25.

Let us call the function that adds at the front of the list is push().

The push() must receive a pointer to the head pointer, because

push must change the head pointer to point to the new node

8/13

Singly Linked List Based Implementation –Cont..

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

void push(struct Node** head_ref, int new_data)
{
 /* 1. allocate node */
 struct Node* new_node = (struct Node*) malloc(sizeof(struct
Node));

 /* 2. put in the data */
 new_node->data = new_data;

 /* 3. Make next of new node as head */
 new_node->next = (*head_ref);

 /* 4. move the head to point to the new node */
 (*head_ref) = new_node;
}

9/13

Singly Linked List Based Implementation –Cont..

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

2) After a given node.

We are given a pointer to a node, and the new node is inserted after the given node.

10/13

Singly Linked List Based Implementation –Cont..

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

void insertAfter(struct Node* prev_node, int new_data)
{
 /*1. check if the given prev_node is NULL */
 if (prev_node == NULL)
 {
 printf("the given previous node cannot be NULL");
 return;
 }

 /* 2. allocate new node */
 struct Node* new_node =(struct Node*) malloc(sizeof(struct Node));

 /* 3. put in the data */
 new_node->data = new_data;

 /* 4. Make next of new node as next of prev_node */
 new_node->next = prev_node->next;

 /* 5. move the next of prev_node as new_node */
 prev_node->next = new_node;
}

11/13

Singly Linked List Based Implementation –Cont..
3) At the end of the linked list.

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

• The new node is always added after the last node of the given

Linked List. For example if the given Linked List is 5->10->15-

>20->25 and we add an item 30 at the end, then the Linked List

becomes 5->10->15->20->25->30.

• Since a Linked List is typically represented by the head of it, we

have to traverse the list till the end and then change the next to

last node to a new node.

12/13

Singly Linked List Based Implementation –Cont..

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

void append(struct Node** head_ref, int new_data)
{
 /* 1. allocate node */
 struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));
 struct Node *last = *head_ref; /* used in step 5*/
 /* 2. put in the data */
 new_node->data = new_data;
 /* 3. This new node is going to be the last node, so make next
 of it as NULL*/
 new_node->next = NULL;
 /* 4. If the Linked List is empty, then make the new node as head */
 if (*head_ref == NULL)
 {
 *head_ref = new_node;
 return;
 }
/* 5. Else traverse till the last node */
 while (last->next != NULL)
 last = last->next;

 /* 6. Change the next of last node */
 last->next = new_node;
 return;
}

13/13

 Activity

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE 14/18

Advantages

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE

Dynamic data structure: A linked list is a dynamic arrangement so

it can grow and shrink at runtime by allocating and deallocating

memory. So there is no need to give the initial size of the linked list.

No memory wastage: In the Linked list, efficient memory utilization

can be achieved since the size of the linked list increase or decrease at

run time so there is no memory wastage and there is no need to pre-

allocate the memory.

Implementation: Linear data structures like stack and queues are

often easily implemented using a linked list.

Insertion and Deletion Operations: Insertion and deletion

operations are quite easier in the linked list. There is no need to shift

elements after the insertion or deletion of an element only the address

present in the next pointer needs to be updated.

15/13

Disadvantages

Memory usage: More memory is required in the linked list as compared to

an array. Because in a linked list, a pointer is also required to store the

address of the next element and it requires extra memory for itself.

Traversal: In a Linked list traversal is more time-consuming as compared

to an array. Direct access to an element is not possible in a linked list as in

an array by index. For example, for accessing a mode at position n, one has

to traverse all the nodes before it.

Reverse Traversing: In a singly linked list reverse traversing is not

possible, but in the case of a doubly-linked list, it can be possible as it

contains a pointer to the previously connected nodes with each node. For

performing this extra memory is required for the back pointer hence, there

is a wastage of memory.

Random Access: Random access is not as possible in a linked list due to

its dynamic memory allocation.
08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA

STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE 16/13

Assessment 1

1. List out the advantages of linked list based
implementation

 a)_______________________________________
 b)_______________________________________
 c)_______________________________________

d)_______________________________________

2.Identify the disadvantages of linked list based
implementation

 a)_______________________________________
 b)_______________________________________
 c)_______________________________________

d)_______________________________________

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE 17/18

REFERENCES

1. M. A. Weiss, “Data Structures and Algorithm Analysis in C”,

Pearson Education, 8th Edition, 2007. [Unit I, II, III, IV,V]

2. A. V. Aho, J. E. Hopcroft and J. D. Ullman, “Data Structures

and Algorithms”, Pearson Education, 2nd Edition, 2007 [Unit IV].

3. A.M.Tenenbaum, Y. Langsam and M. J. Augenstein, “Data

Structures using C”,PearsonEducation, 1st Edition, 2003.(UNIT

I,II,V)

4.https://www.youtube.com/watch?v=0xoYNbVTiSE&t=256s

THANK YOU

08/25/22 LINEAR STRUCTURES AND TREES / 19ITT201 - DATA
STRUCTURES /Mr.R.kamalakkannan/CSE-IOT/SNSCE 18/18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

